首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2246篇
  免费   105篇
  国内免费   9篇
化学   1873篇
晶体学   12篇
力学   25篇
数学   222篇
物理学   228篇
  2023年   25篇
  2022年   14篇
  2021年   55篇
  2020年   48篇
  2019年   59篇
  2018年   40篇
  2017年   37篇
  2016年   84篇
  2015年   86篇
  2014年   82篇
  2013年   118篇
  2012年   151篇
  2011年   203篇
  2010年   121篇
  2009年   109篇
  2008年   153篇
  2007年   153篇
  2006年   114篇
  2005年   119篇
  2004年   96篇
  2003年   89篇
  2002年   61篇
  2001年   32篇
  2000年   14篇
  1999年   23篇
  1998年   7篇
  1997年   13篇
  1996年   14篇
  1995年   23篇
  1994年   22篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   21篇
  1989年   15篇
  1988年   11篇
  1987年   7篇
  1986年   5篇
  1985年   15篇
  1984年   9篇
  1983年   6篇
  1982年   12篇
  1980年   8篇
  1979年   13篇
  1978年   9篇
  1977年   4篇
  1976年   4篇
  1975年   4篇
  1974年   3篇
  1967年   2篇
排序方式: 共有2360条查询结果,搜索用时 15 毫秒
1.
The human macrophage galactose-type lectin (MGL), expressed on macrophages and dendritic cells (DCs), modulates distinct immune cell responses by recognizing N-acetylgalactosamine (GalNAc) containing structures present on pathogens, self-glycoproteins, and tumor cells. Herein, NMR spectroscopy and molecular dynamics (MD) simulations were used to investigate the structural preferences of MGL against different GalNAc-containing structures derived from the blood group A antigen, the Forssman antigen, and the GM2 glycolipid. NMR spectroscopic analysis of the MGL carbohydrate recognition domain (MGL-CRD, C181-H316) in the absence and presence of methyl α-GalNAc (α-MeGalNAc), a simple monosaccharide, shows that the MGL-CRD is highly dynamic and its structure is strongly altered upon ligand binding. This plasticity of the MGL-CRD structure explains the ability of MGL to accommodate different GalNAc-containing molecules. However, key differences are observed in the recognition process depending on whether the GalNAc is part of the blood group A antigen, the Forssman antigen, or GM2-derived structures. These results are in accordance with molecular dynamics simulations that suggest the existence of a distinct MGL binding mechanism depending on the context of GalNAc moiety presentation. These results afford new perspectives for the rational design of GalNAc modifications that fine tune MGL immune responses in distinct biological contexts, especially in malignancy.  相似文献   
2.
ABSTRACT

We demonstrate that Ullman fragment-coupling can be used to synthesise an oxacalix[4]arene monocarboxylic acid, which provides easy access to its water-soluble carboxylato derivatives. Crystallographic and computational data suggest that the new carboxyl-substituted oxacalix[4]arene adopts a 1,3-alternate conformation both in the solid-state and in methanol solution. Its water-soluble tetrabutylammonium derivate can detect the herbicide paraquat at neutral pH in aqueous media (K a = 111 ± 3 M–1) and in methanol (K a = 2020 ± 70 M–1).  相似文献   
3.
4.
5.
By using complementary experimental techniques and first‐principles theoretical calculations, magnetic anisotropy in a series of five hexacoordinated nickel(II) complexes possessing a symmetry close to C2v, has been investigated. Four complexes have the general formula [Ni(bpy)X2]n+ (bpy=2,2′‐bipyridine; X2=bpy ( 1 ), (NCS?)2 ( 2 ), C2O42? ( 3 ), NO3? ( 4 )). In the fifth complex, [Ni(HIM2‐py)2(NO3)]+ ( 5 ; HIM2‐py=2‐(2‐pyridyl)‐4,4,5,5‐tetramethyl‐4,5‐dihydro‐1H‐imidazolyl‐1‐hydroxy), which was reported previously, the two bpy bidentate ligands were replaced by HIM2‐py. Analysis of the high‐field, high‐frequency electronic paramagnetic resonance (HF‐HFEPR) spectra and magnetization data leads to the determination of the spin Hamiltonian parameters. The D parameter, corresponding to the axial magnetic anisotropy, was negative (Ising type) for the five compounds and ranged from ?1 to ?10 cm?1. First‐principles SO‐CASPT2 calculations have been performed to estimate these parameters and rationalize the experimental values. From calculations, the easy axis of magnetization is in two different directions for complexes 2 and 3 , on one hand, and 4 and 5 , on the other hand. A new method is proposed to calculate the g tensor for systems with S=1. The spin Hamiltonian parameters (D (axial), E (rhombic), and gi) are rationalized in terms of ordering of the 3 d orbitals. According to this orbital model, it can be shown that 1) the large magnetic anisotropy of 4 and 5 arises from splitting of the eg‐like orbitals and is due to the difference in the σ‐donor strength of NO3? and bpy or HIM2‐py, whereas the difference in anisotropy between the two compounds is due to splitting of the t2g‐like orbitals; and 2) the anisotropy of complexes 1 – 3 arises from the small splitting of the t2g‐like orbitals. The direction of the anisotropy axis can be rationalized by the proposed orbital model.  相似文献   
6.
7.
8.
We reply to the comment by S. Pan and G. Frenking who challenged our interpretation of the Na?:→BH3 dative bond in the recently synthesized NaBH3? cluster. Our conclusion remains the same as that in our original paper ( https://doi.org/10.1002/anie.201907089 and https://doi.org/10.1002/ange.201907089 ). This conclusion is additionally supported by the energetic pathways and NBO charges calculated at UCCSD and CASMP2(4,4) levels of theory. We also discussed the suitability of the Laplacian of electron density (QTAIM) and Adaptive Natural Density Partitioning (AdNDP) method for bond type assignment. It seems that AdNDP yields more sensible results. This discussion reveals that the complex realm of bonding is full of semantic inconsistencies, and we invite experimentalists and theoreticians to elaborate this topic and find solutions incorporating different views on the dative bond.  相似文献   
9.
Dr. Thomas Dougherty and his Oncology Foundation of Buffalo were the first to support my (S.O.G.) research into the effects of photodynamic therapy (PDT) on the host immune system. The small grant I was awarded in 2002 launched my career as an independent researcher; at the time, there were few studies on the importance of the immune response on the efficacy of PDT and no studies demonstrating the ability of PDT to enhance antitumor immunity. Over the last decades, the interest in PDT as an enhancer of antitumor immunity and our understanding of the mechanisms by which PDT enhances antitumor immunity have dramatically increased. In this review article, we look back on the studies that laid the foundation for our understanding and provide an update on current advances and therapies that take advantage of PDT enhancement of immunity.  相似文献   
10.
The interaction of human galectin-1 with a variety of oligosaccharides, from di-(N-acetyllactosamine) to tetra-saccharides (blood B type-II antigen) has been scrutinized by using a combined approach of different NMR experiments, molecular dynamics (MD) simulations, and isothermal titration calorimetry. Ligand- and receptor-based NMR experiments assisted by computational methods allowed proposing three-dimensional structures for the different complexes, which explained the lack of enthalpy gain when increasing the chemical complexity of the glycan. Interestingly, and independently of the glycan ligand, the entropy term does not oppose the binding event, a rather unusual feature for protein-sugar interactions. CLEANEX-PM and relaxation dispersion experiments revealed that sugar binding affected residues far from the binding site and described significant changes in the dynamics of the protein. In particular, motions in the microsecond-millisecond timescale in residues at the protein dimer interface were identified in the presence of high affinity ligands. The dynamic process was further explored by extensive MD simulations, which provided additional support for the existence of allostery in glycan recognition by human galectin-1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号