首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Upscaling in Subsurface Transport Using Cluster Statistics of Percolation   总被引:1,自引:0,他引:1  
Transport/flow problems in soils have been treated in random resistor network representations (RRNs). Two lines of argument can be used to justify such a representation. Solute transport at the pore-space level may probably be treated using a system of linear, first-order differential equations describing inter-pore probability fluxes. This equation is equivalent to a random impedance network representation. Alternatively, Darcys law with spatially variable hydraulic conductivity is equivalent to an RRN. Darcys law for the hydraulic conductivity is applicable at sufficiently low pressure head in saturated soils, but only for steady-state flow in unsaturated soils. The result given here will have two contributions, one of which is universal to any linear conductance problem, i.e., requires only the applicability of Darcys (or Ohms) law. The second contribution depends on the actual distribution of linear conductances appropriate. Although nonlinear effects in RRNs (including changes in resistance values resulting from current, analogous to changes in matric potential resulting from flow) have been treated within the framework of percolation theory, the theoretical development lags the corresponding development of the linear theory, which is, in principle, on a solid foundation. In practice, calculations of the nonlinear conductivity in relatively (compared with soils) well characterized solid-state systems such as amorphous or impure semiconductors, do not agree with each other or with experiment. In semiconductors, however, experiments do at least appear consistent with each other.In the limit of infinite system size the transport properties of a sufficiently inhomogeneous medium are best calculated through application of critical rate analysis with the system resistivity related to the critical (percolating) resistance value, Rc. Here well-known cluster statistics of percolation theory are used to derive the variability, W (R,x) in the smallest maximal resistance, R of a path spanning a volume x3 as well as to find the dependence of the mean value of the conductivity, (x). The functional form of the cluster statistics is a product of a power of cluster size, and a scaling function, either exponential or Gaussian, but which, in either case, cuts off cluster sizes at a finite value for any maximal resistance other than Rc. Either form leads to a maximum in W (R,x) at R=Rc. When the exponential form of the cluster statistics is used, and when individual resistors are exponential functions of random variables (as in stochastic treatments of the unsaturated zone by the McLaughlin group [see Graham and MacLaughlin (1991), or the series of papers by Yeh et al. (1985, 1995), etc.], or as is known for hopping conduction in condensed matter physics), then W (R,x) has a power law decay in R/Rc (or Rc/R, the power being an increasing function of x. If the statistics of the individual resistors are given by power law functions of random variables (as in Poiseiulles Law), then an exponential decay in R for W (R,x) is obtained with decay constant an increasing function of x. Use, instead, of the Gaussian cluster statistics alters the case of power law decay in R to an approximate power, with the value of the power a function of both R and x.  相似文献   

2.
This paper studies the generalized Lorenz canonical form of dynamical systems introduced by elikovský and Chen [International Journal of Bifurcation and Chaos 12(8), 2002, 1789]. It proves the existence of a heteroclinic orbit of the canonical form and the convergence of the corresponding series expansion. The ilnikov criterion along with some technical conditions guarantee that the canonical form has Smale horseshoes and horseshoe chaos. As a consequence, it also proves that both the classical Lorenz system and the Chen system have ilnikov chaos. When the system is changed into another ordinary differential equation through a nonsingular one-parameter linear transformation, the exact range of existence of ilnikov chaos with respect to the parameter can be specified. Numerical simulation verifies the theoretical results and analysis.  相似文献   

3.
This paper presents a physics-oriented approach to approximate the continuum equations governing porous media flow by discrete analogs. To that end, the continuity equation and Darcys law are reformulated using exterior differential forms. This way the derivation of a system of algebraic equations (the discrete analog) on a finite-volume mesh can be accomplished by simple and elegant translation rules. In the discrete analog the information about the conductivities of the porous medium and the metric of the mesh are represented in one matrix: the discrete dual. The discrete dual of the block-centered finite difference method is presented first. Since this method has limited applicability with respect to anisotropy and non-rectangular grid blocks, the finite element dual is introduced as an alternative. Application of a domain decomposition technique yields the face-centered finite element method. Since calculations based on pressures in volume centers are sometimes preferable, a volume-centered approximation of the face-centered approximation is presented too.  相似文献   

4.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

5.
Übersicht Ausgehend von bekannten Fundamentallösungen für Platten bzw. Scheiben wird die Erstellung singulärer Ansatzfunktionen gezeigt, wie sie für finite Näherungsverfahren benötigt werden, die von den Funktionalen der totalen Energie bzw. der komplementären Energie ausgehen. Das Vorgehen wird eingehend an Kreiszylinderschalen erläutert.
Summary Starting from known fundamental solutions of plates the construction of singular basic estimate functions is shown. These are necessary in finite approximation methods basing on the functionals of total energy or complementary energy. The proceeding is explained in detail in a cylindrical shell analysis.
  相似文献   

6.
Kurt Hain 《Meccanica》1993,28(4):277-280
The mechanism synthesis concerning pure numerical methods can only be realized below given boundaries — and this because of the high power of the system equations. For some time the author has been using graphical methods to pass those boundaries concerning multilink mechanisms. By means of the Drawing-Following Method developed by the author, simple but highly accurate computer programs are now available. As a fundamental rule, reductions are used by the coincidences of several poles. Additionally, the new methods are based on the first deviation of correlation of point positions and relative angles, i.e. by the use of the momentary velocity ratios. By this the torque and force relationships are also immediately given.This paper is a renewed part of a series of lectures given by the author between 25 and 28 September 1972 at the International Centre for Mechanical Sciences, Udine, Italy. The lectures were entitled Theory of mechanisms, dimensional synthesis of linkages by geometrical and graphical methods (10 lecture hours). In the meantime those lectures have been computer programmed using the so-called Drawing-Following Method developed by the author.  相似文献   

7.
The two-dimensional Navier–Stokes- model is considered on the torus and on the sphere. Upper and lower bounds for the dimension of the global attractors are given. The dependence of the dimension of the global attractors on is studied. Special attention is given for the limiting cases when 0, that is, when the Navier–Stokes- model tends to the Navier–Stokes equations, and to the case when .  相似文献   

8.
The spatial planetary three-body problem (i.e., one star and two planets, modelled by three massive points, interacting through gravity in a three dimensional space) is considered. It is proved that, near the limiting stable solutions given by the two planets revolving around the star on Keplerian ellipses with small eccentricity and small non-zero mutual inclination, the system affords two-dimensional, elliptic, quasi-periodic solutions, provided the masses of the planets are small enough compared to the mass of the star and provided the osculating Keplerian major semi-axes belong to a two-dimensional set of density close to one.  相似文献   

9.
Yangsheng  Zhao  Yaoqing  Hu  Jingping  Wei  Dong  Yang 《Transport in Porous Media》2003,53(3):235-244
Effective stress law of all kinds of coal samples, including steam coal, fat coal, corking coal, thin coal and anthracite, under pore pressure of gas, is experimentally studied using a newly developed test machine. These samples are taken from Coal Mines in Wuda, Hebi, Yanzhou, Yangquan, Qingshui, and Gujiao in China. The experiment results show that, under pore pressure of gas, the tested coal samples comply with Biots effective stress law, where the Biots coefficient is not a constant, and is bilinear function of volumetric stress () and pore pressure (p), that is, We define four areas according to the numerical feature of , that is, functionless area of pore pressure, normal function area, fracturing function area, and quasi-soil function area. The effective stress law of coal mass introduced by this paper is a constitutive equation in the study of coupled solid and fluid. This has significance in the drainage and outburst of methane in coal seam.  相似文献   

10.
Explicit formulae for the finite strain and rotation measures are given, in the cases when either one of the infinitesimal tensors of strain and rotation vanishes. Conversely, when the finite strain or rotation measure vanishes, explicit formulae for the infinitesimal tensors of strain and rotation are also obtained.  相似文献   

11.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

12.
After reviewing the proof of Ericksens theorem for the set of unconstrained, homogeneous, isotropic, hyperelastic materials, Ericksens result is sharpened to cover the subset of materials that possess a natural configuration and satisfy the empirical inequalities. Mathematics Subject Classifications (2000) 74B20.  相似文献   

13.
We study the asymptotic behavior of a compressible isentropic flow through a porous medium when the initial mass is finite. The model system is the compressible Euler equation with frictional damping. As t, the density is conjectured to obey the well-known porous medium equation and the momentum is expected to be formulated by Darcys law. In this paper, we give a definite answer to this conjecture without any assumption on smallness or regularity for the initial data. We prove that any L weak entropy solution to the Cauchy problem of damped Euler equations with finite initial mass converges, strongly in Lp with decay rates, to matching Barenblatts profile of the porous medium equation. The density function tends to the Barenblatts solution of the porous medium equation while the momentum is described by Darcys law.This revised version was published in April 2005. The volume number has now been inserted into the citation line.  相似文献   

14.
A closed but approximate formula of Green‘s function for an arbitrary aggregate of cubic crystallites is given to derive the effective elastic stiffness tensor of the polycrystal. This formula, which includes three elastic constants of single cubic crystal and five texture coefficients,accounts for the effects of the orientation distribution function (ODF) up to terms linear in the texture coefficients. Thus it is expected that our formula would be applicable to arbitrary aggregates with weak texture or to materials such as aluminum whose single crystal has weak anisotropy.Three examples are presented to compare predictions from our formula with those from Nishioka and Lothe‘s formula and Synge‘s contour integral through numerical integration. As an application of Green‘s function, we briefly describe the procedure of deriving the effective elastic stiffness tensor for an orthorhombic aggregate of cubic crystallites. The comparison of the computational results given by the finite element method and our effective elastic stiffness tensor is made by an example.  相似文献   

15.
The wedge subjected to tractions: a paradox resolved   总被引:4,自引:0,他引:4  
The classical two-dimensional solution provided by Lévy for the stress distribution in an elastic wedge, loaded by a uniform pressure on one face, becomes infinite when the opening angle 2 of the wedge satisfies the equation tan 2 = 2. Such pathological behavior prompted the investigation in this paper of the stresses and displacements that are induced by tractions of O(r ) as r0. The key point is to choose an Airy stress function which generates stresses capable of accommodating unrestricted loading. Fortunately conditions can be derived which pre-determine the form of the necessary Airy stress function. The results show that inhomogeneous boundary conditions can induce stresses of O(r ), O(r ln r), or O(r ln2 r) as r0, depending on which conditions are satisfied. The stress function used by Williams is sufficient only if the induced stress and displacement behavior is of the power type. The wedge loaded by uniform antisymmetric shear tractions is shown in this paper to exhibit stresses of O(ln r) as r0 for the half-plane or crack geometry. At the critical opening angle 2, uniform antisymmetric normal and symmetric shear tractions also induce the above type of stress singularity. No anticipating such stresses, Lévy used an insufficiently general Airy stress function that led to the observed pathological behavior at 2.  相似文献   

16.
The stress state of an elastic orthotropic medium with a penny-shaped crack   总被引:2,自引:0,他引:2  
The static-equilibrium problem for an elastic orthotropic space with a circular (penny-shaped) crack is solved. The stress state of an elastic medium is represented as a superposition of the principal and perturbed states. To solve the problem, Willis approach is used, which is based on the triple Fourier transform in spatial variables, the Fourier-transformed Greens function for an anisotropic material, and Cauchys residue theorem. The contour integrals obtained are evaluated using Gauss quadrature formulas. The results for particular cases are compared with those obtained by other authors. The influence of anisotropy on the stress intensity factors is studied.__________Translated from Prikladnaya Mekhanika, Vol. 40, No. 12, pp. 76–83, December 2004.  相似文献   

17.
A few additional data from our previous experiments were plotted to emphasize the shear-thickening behavior of deoxy sickle erythrocyte (SS) suspension. A constitutive equation (named as FX equation) was developed and applied to a cylindrical pipe flow of a shear-thickening fluid. A blunt velocity profile and its volume flow rate were calculated. The flow was non-viscous (potential) in the central part of the pipe (i.e. the central core or the central plug-flow), and became more and more viscous towards the wall of the pipe after a specific radial distance, which was determined by a critical shear rate of (named as Fungs shear rate). Furthermore, combining the FX equation with the original Cassons equation, the author obtained a modified Cassons equation by introducing .The English text was polished by Yunming Chen.  相似文献   

18.
Orbital Tubes     
A novel graphical presentation is proposed to convey information about relevant dynamic phenomena and behaviour of a rotor. The orbital tube is a three-dimensional plot in which the orbits are stacked in the third dimension at various rotating speeds. It may be conveniently used to represent and analyse data obtained from analytical, numerical and experimental means. Some illustrating examples are reported.  相似文献   

19.
Abstract. The present study focuses on the kinetic and non-deterministic aspects of the brittle to quasi-brittle transition. A solid is approximated by a lattice formed by the interacting continuum particles and the evolution of damage is estimated using particle dynamics. The onset of transition is measured by the rate of the change of correlation length. The proposed method is illustrated on the examples of creep rupture, strain localization and dynamic expansion of a circular void in a brittle plate.Sommario. Viene posta l'attenzione sugli aspetti cinetici e non deterministici della transizione dal comportamento fragile a quello quasi-fragile. Un solido viene approssimato da un reticolo formato da particelle interagenti e l'evoluzione del danno viene stimata tramite la dinamica delle particelle. L'inizio della transizione viene misurato tramite la variazione della lunghezza di correlazione. Il metodo proposto viene illustrato su esempi di rottura per creep, localizzazione della deformazione e l'espansione di un foro circolare in una piastra fragile.  相似文献   

20.
Interaction of a parallel fast MHD shock with a layer of decreased density is discussed using ideal MHD approach. This is an extrapolation of gas dynamic thermal layer effect on ideal MHD. Computer simulations show that a magnetic field of a moderate intensity ( 1) may change the character of the flow for intermediate Mach numbers (M 5) and a new raking regime may occur which is not observed in the absence of a magnetic field. Self similar precursor analogous to that in gas dynamics may develop in the case of highM and low density in the layer but magnetic forces essentially decrease its growth rate. This problem appears in connection with cosmical shock propagation where planetary magnetic tails play the role of the thermal layer, and it may also be observed in the laboratory when the shock is strong enough to heat the walls ahead of it.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号