首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
作为一种配点型无网格法,无网格介点MIP法具有数值实施简单、计算精度高、运算高效和适用范围广等优点。Helmholtz方程是科学与工程问题中广泛应用的一类特殊方程,因此对MIP法求解此类方程的适用性进行了验证。利用MIP法的d适应性,给出了MIP法求解该方程的两种计算格式。在数值算例中,分别对平面规则域和不规则域上的一般Helmholtz方程,以及轴对称Helmholtz方程进行了数值分析。结果表明,MIP法完全适用于求解Helmholtz方程。而且,MIP法的计算精度和收敛性都优于普通配点法。此外,MIP法的两种计算格式中,L2C0型通常具有更好的计算效果,故建议将该计算格式作为MIP法求解该类方程的标准形式。  相似文献   

2.
提出一种基于奇异边界法结合双重互易法的数值模型来求解瞬态热传导问题。奇异边界法属于配点型边界无网格方法,相对于网格方法,其具有无需划分网格,只需边界配点的优势。运用差分格式来处理热传导方程中的时间变量,将原热传导方程化为非齐次修正Helmholtz方程。修正Helmholtz方程的解由齐次解和特解两部分组成,齐次解通过奇异边界法求出,特解由双重互易法求出,源项由径向基函数近似。通过数值算例检验了本文数值模型的精度及有效性;算例结果表明,该数值模型计算精度较高,误差基本都在1%以内,具有很好的稳定性,能有效地应用于求解多连通域的瞬态热传导问题。  相似文献   

3.
求解Helmholtz方程基于核重构思想的最小二乘配点法   总被引:2,自引:0,他引:2  
基于核重构思想构造近似函数,将配点法和最小二乘原理相结合对微分方程进行离散, 建立了Helmholtz方程的最小二乘配点格式,并分别研究了Helmholtz方程的波传播问题和 边界层问题. 通过数值算例可以发现,给出的数值计算结果非常接近于精确解,计算精度明显高于SPH 法的数值结果,且随着节点数目的增加,其精确度越来越高,具有良好的收敛性.  相似文献   

4.
基本解方法与边界节点法求解Helmholtz方程的比较研究   总被引:4,自引:4,他引:0  
基本解方法和边界节点法是基于径向基函数的两种重要无网格边界离散数值技术。针对Helmholtz方程,本文比较研究这两种数值方法在不同计算区域问题上的计算精度、插值矩阵对称性、病态性及计算成本。数值试验结果表明,两种方法都可以有效求解边界数据准确的Helmholtz问题。在数值离散过程中,两种方法都可以通过调整配置点的位...  相似文献   

5.
胡明皓  王莉华 《力学学报》2023,(7):1526-1536
由于无网格法中大多数近似函数均为有理式,不具有Kronecker delta性质,因此难以精确地施加本质边界条件.边界误差较大容易导致整个求解域求解结果精度低,甚至引起数值不稳定现象.文章在无网格直接配点法和稳定配点法中引入拉格朗日插值函数作为形函数,构建了拉格朗日插值配点法(LICM)和拉格朗日插值稳定配点法(SLICM).由于拉格朗日插值具有Kronecker delta性质,可以像有限元法一样简单而精确地施加本质边界条件,提高这两种方法的数值求解精度.稳定配点法基于子域对强形式方程进行积分,可以满足高阶积分约束,即可以保证形函数在积分形式下也满足高阶一致性条件,实现精确积分.同时,进行子域积分还可以减少离散矩阵的条件数,从而提高算法的稳定性.进一步提高拉格朗日插值稳定配点法的精度和稳定性.通过数值算例验证这两种方法的精度、收敛性和稳定性,结果表明基于拉格朗日插值的配点法的精度优于基于重构核近似的配点法,拉格朗日插值稳定配点法的精度和稳定性均优于拉格朗日插值配点法.  相似文献   

6.
Burgers方程的小波精细积分算法   总被引:7,自引:3,他引:7  
求解偏微分方程的常用方法包括有限差分法、有限元法等。近年来,小波分析在偏微分方程数值求解中的应用已引起很多学者的关注,例如采用Daubechies小波或shannon小波构造的小波配置方法已经取得较好的结果。钟万勰院士提出的偏微分方程的子域精细积分方法是一种半解析方法,方法简单,精度高。将小波方法和精细积分方法相结合应用于偏微分方程的数值求解中将有利于提高算法的精度和稳定性,为此本文以Burgers方程为例,提出了一种求解一维非线性抛物型偏微分方程的小波精积分方法。该方法用拟小波配点法对空间域进行离散,建立起对时间的常微分方程组,然后采用精细时程积分方法对该方程组求解。数值计算结果表明,该方法同其它方法相比,具有计算格式简单,数值稳定性和精度较高的优点。  相似文献   

7.
边界节点法利用满足控制方程的非奇异通解作为基函数,半解析边界数值离散偏微分方程,具有精度高、收敛快、易编程等优点,是一种纯无网格配点方法.但是在求解具体问题时,随着节点数的增加,边界节点法经常得到严重病态的插值矩阵.本文利用有效条件数评价边界节点法求解Helmholtz问题线性方程组的计算稳定性;然后利用三种正则化方法处理其病态的线性方程组,并与高斯消元法比较计算精度和收敛性.通过数值实验,本文研究了有效条件数、误差和正则化方法之间的关系.  相似文献   

8.
通过Adomian分解法求解二维Helmholtz方程   总被引:1,自引:1,他引:0  
毛崎波 《计算力学学报》2014,31(1):37-40,102
提出基于Adomian分解法求解二维Helmholtz方程。通过Adomian分解法可以把Helmholtz微分方程和边界条件分别转换成递归代数公式和适用符号计算的简单代数公式。利用边界条件可以很容易得到方程的解析解表达式。Adomian分解法的主要特点在于计算简单快速,并且不需要进行线性化或离散化。最后给出数值实例以验证Adomian分解法求解二维Helmholtz方程的有效性。通过数值计算可以发现,基于Adomian分解法的计算结果非常接近精确解,并且该方法具有良好的收敛性。这表明Adomian分解法能够快速有效求解Helmholtz方程。  相似文献   

9.
提出基于Adomian分解法求解二维Helmholtz方程。通过Adomian分解法可以把Helmholtz微分方程和边界条件分别转换成递归代数公式和适用符号计算的简单代数公式。利用边界条件可以很容易得到方程的解析解表达式。Adomian分解法的主要特点在于计算简单快速,并且不需要进行线性化或离散化。最后给出数值实例以验证Adomian分解法求解二维Helmholtz方程的有效性。通过数值计算可以发现,基于Adomian分解法的计算结果非常接近精确解,并且该方法具有良好的收敛性。这表明Adomian分解法能够快速有效求解Helmholtz方程。  相似文献   

10.
通过在单元交界面处进行高阶WENO重构,得到了一种求解双曲型守恒律方程的WENO型熵相容格式。用该格式对一维Burgers方程和Euler方程进行数值模拟,结果表明,该格式具有高精度、基本无振荡性等特点。  相似文献   

11.
无网格局部强弱法求解不规则域问题   总被引:6,自引:5,他引:1  
无网格局部彼得洛夫-伽辽金(meshless local Petrov-Galerkin,MLPG)法是一种具有代表性的无网格方法,在计算力学领域得到广泛应用.然而,这种方法在边界上需执行积分运算,通常很难处理不规则求解域问题.为了克服MLPG法的这种局限性,提出了无网格局部强弱(meshless local strong-weak,MLSW)法.MLSW法采用MLPG法离散内部求解域,采用无网格介点(meshless intervention-point,MIP)法施加自然边界条件,并采用配点法施加本质边界条件,避免执行边界积分运算,可适用于求解各类复杂的不规则域问题.从理论上讲,这种结合式方法,既保持了MLPG法稳定而精确计算的优势,同时兼备配点型方法在处理复杂结构问题时简洁而灵活的优势,实现了弱式法和强式法的优势互补.此外,MLSW法采用移动最小二乘核(moving least squares core,MLSc)近似法来构造形函数,是对传统移动最小二乘(moving least squares,MLS)近似法的一种改进.MLSc使用核基函数代替通常的基函数,有利于数值求解的精确性和稳定性,而且其导数近似计算变得更为简单.数值算例结果初步表明:这种新方法实施简单,求解稳定、精确,表现出适合工程运用的潜力.  相似文献   

12.
拟谱方法和微分求积法是两类重要的无网格法,二者都已在科学和工程计算中获得了广泛应用。采用拉格朗日插值多项式作为二者的试函数,且采用同一种网格点分布,指出了在空间域上,微分求积法是拟谱方法的一种特殊形式。在此基础上,结合二者各自的特点,提出了拟谱-微分求积混合方法用于求解一类双曲电报方程。理论分析和数值测试表明,新方法在空间域上具有谱精度收敛性,在时间域上是A-稳定的,比较适合于求解多维电报方程。  相似文献   

13.
拟谱方法和微分求积法是两类重要的无网格法,二者都已在科学和工程计算中获得了广泛应用。采用拉格朗日插值多项式作为二者的试函数,且采用同一种网格点分布,指出了在空间域上,微分求积法是拟谱方法的一种特殊形式。在此基础上,结合二者各自的特点,提出了拟谱-微分求积混合方法用于求解一类双曲电报方程。理论分析和数值测试表明,新方法在空间域上具有谱精度收敛性,在时间域上是A-稳定的,比较适合于求解多维电报方程。  相似文献   

14.
提出了一种新型无网格法,即无网格全局介点(MGIP)法。该方法采用移动最小二乘核近似来构造形函数,有利于提高数值方法的计算稳定性,而且算法更为简单。该方法需要引入全局介点进行数值离散,基于有限点的广义变分法导出求解系统方程,并采用罚系数法来保证边界条件,数值实现较为简洁。数值算例结果表明:MGIP法的计算耗时不到无网格局部彼得洛夫-伽辽金法的1%,具有较高的计算效率;相比于一般配点法,本文方法的计算稳定性更好,计算精度更高。  相似文献   

15.
采用径向基函数配点法分析考虑剪切效应的梁板弯曲问题,该方法利用径向基函数作为近似函数,基于配点法离散方程,通过最小二乘法求解。径向基函数配点法在离散和计算过程中不需要任何形式的网格划分,是一种真正的无网格法;径向基函数可以用一元函数来描述多元函数,存在明显的储存和运算简单的特点;而基于配点法求解不需要积分,提高了计算效率。分析考虑剪切效应的薄梁板问题时,传统的有限元法或无网格法求解均会存在剪切锁闭问题,而径向基函数在全域内存在无限连续性,能够准确地满足Kirchhoff约束条件,因此径向基函数配点法能够消除剪切锁闭现象,而且不会出现应力波动。该方法的优势在于,其不仅易于离散、精度高,而且具有指数收敛率,计算效率高。数值算例验证了上述结论和该方法的稳定性。  相似文献   

16.
Helmholtz方程的微分容积解法   总被引:1,自引:0,他引:1  
用一种新型的数值技术--微分容积法(Differential Cubature Method)求解二维Helmholtz方程的边值问题,几个数值算例表明,该方法稳定收敛,并具有较好的数值精度,本文方法适用于求解具有较小波数的Helmholtz方程。  相似文献   

17.
提出了一种基于AH(Associated Hermite)正交基函数求解对流扩散方程的无条件稳定算法。该算法将方程的时间项通过Hermite多项式作为正交基函数进行展开,利用Galerkin方法消除时间变量项,从而导出有限维AH域隐式差分方程,突破了传统显式差分格式稳定性条件的限制,最后通过对AH域展开系数的求解得到该对流扩散方程的数值解。在数值算例中,将该算法与传统显示差分法和交替方向隐式差分法进行对比分析,数值计算结果表明,算法无条件稳定且其计算精度与时间步长无关,对于具有精细结构的对流换热问题,该算法具有明显的效率优势,且保持了较高的精度。  相似文献   

18.
文章利用重心有理插值迭代配点法分析计算非线性MEMS微梁问题。通过处理MEMS微梁的几何通过假设初始函数,将微梁非线性控制方程转换为线性化微分方程,建立逼近非线性微分方程的线性化迭代格式。采用重心有理插值配点法求解线性化微分方程,提出了数值分析MEMS微梁非线性弯曲问题的重心插值迭代配点法。给出了非线性微分方程的直接线性化和Newton线性化计算公式,详细讨论了非线性积分项的计算方法和公式。利用重心有理插值微分矩阵,建立了矩阵-向量化的重心插值迭代配点法的计算公式。数值算例结果表明,重心插值迭代配点法求解微梁非线性弯曲问题,具有计算公式简单、程序实施方便和计算精度高的特点。  相似文献   

19.
无网格法因为不需要划分网格,可以避免网格畸变问题,使得其广泛应用于大变形和一些复杂问题.径向基函数配点法是一种典型的强形式无网格法,这种方法具有完全不需要任何网格、求解过程简单、精度高、收敛性好以及易于扩展到高维空间等优点,但是由于其采用全域的形函数,在求解高梯度问题时存在精度较低和无法很好地反应局部特性的缺点.针对这个问题,本文引入分区径向基函数配点法来求解局部存在高梯度的大变形问题.基于完全拉格朗日格式,采用牛顿迭代法建立了分区径向基函数配点法在大变形分析中的增量求解模式.这种方法将求解域根据其几何特点划分成若干个子域,在子域内构建径向基函数插值,在界面上施加所有的界面连续条件,构建分块稀疏矩阵统一求解.该方法仍然保持超收敛性,且将原来的满阵转化成了稀疏矩阵,降低了存储空间,提高了计算效率.相比较于传统的径向基函数配点法和有限元法,这种方法能够更好地反应局部特性和求解高梯度问题.数值分析表明该方法能够有效求解局部存在高梯度的大变形问题.  相似文献   

20.
伽辽金型无网格法具有精度高、稳定性好的优点,但是实现高阶准确积分过程复杂,计算效率低.配点型无网格法的计算效率高,但是其在求解复杂问题时往往会出现精度和稳定性较差的结果.本文介绍一种新的无网格法-无网格稳定配点法,采用重构核近似作为近似函数,在规则子域内非常容易实现高阶准确积分,既保留了配点型无网格法效率高的特点,又具备伽辽金型无网格法精度高和稳定性好的特点,而且还兼具有限体积法满足局域离散方程守恒的特点.通过弹性力学算例验证了该算法的优越性,未来可将其进一步应用于流体和流固耦合问题分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号