首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曹星  聂国隽 《力学季刊》2021,42(1):37-45
假设纤维方向角沿层合板的长度方向线性变化,研究含丝束重叠、间隙等制作缺陷的变角度纤维复合材料层合板的屈曲问题.采用ABAQUS 有限元软件建立层合板的有限元模型,选用S4 壳单元计算四边简支层合板在两端压缩荷载作用下的屈曲临界荷载及屈曲模态,并进行详细的参数分析.研究结果表明:当起始角相同时,含或不含制作缺陷的层合板的屈曲临界荷载均随着终止角的增大而逐渐提高,说明纤维的不同铺设方式对层合板的屈曲性能有很大影响.含重叠缺陷的层合板的屈曲临界荷载均大于不含缺陷层合板的值,而含间隙缺陷的层合板的屈曲临界荷载均小于不含缺陷层合板的值.当层合板的重叠、间隙缺陷共存且面积相等时,层合板的屈曲临界荷载与不含缺陷时层合板的值接近,制作缺陷对变角度纤维复合材料层合板屈曲模态的影响较小.本文研究结果可为含缺陷的变角度纤维复合材料层合板设计提供一定参考.  相似文献   

2.
In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.  相似文献   

3.
In this research, vibration and wave propagation analysis of a twisted microbeam on Pasternak foundation is investigated. The strain-displacement relations (kinematic equations) are calculated by the displacement fields of the twisted micro-beam. The strain gradient theory (SGT) is used to implement the size dependent effect at microscale. Finally, using an energy method and Hamilton’s principle, the governing equations of motion for the twisted micro-beam are derived. Natural frequencies and the wave propagation speed of the twisted micro-beam are calculated with an analytical method. Also, the natural frequency, the phase speed, the cut-off frequency, and the wave number of the twisted micro-beam are obtained by considering three material length scale parameters, the rate of twist angle, the thickness, the length of twisted micro-beam, and the elastic medium. The results of this work indicate that the phase speed in a twisted micro-beam increases with an increase in the rate of twist angle. Moreover, the wave number is inversely related with the thickness of micro-beam. Meanwhile, it is directly related to the wave propagation frequency. Increasing the rate of twist angle causes the increase in the natural frequency especially with higher thickness. The effect of the twist angle rate on the group velocity is observed at a lower wave propagation frequency.  相似文献   

4.
李飞  聂国隽 《力学季刊》2019,40(2):265-273
连续丝束剪切(Continuous Tow Shearing, CTS)铺放技术是一种新的变角度层合板制作技术,这种新技术能显著减少丝束铺放过程中产生的丝束重叠和间隙等缺陷,然而,采用CTS技术铺设时,层合板的厚度将随着纤维角度的变化而变化.本文基于一阶剪切变形理论并应用Chebyshev-Ritz法对这种变厚度的变角度复合材料层合板的热屈曲问题进行了研究.假设纤维方向角沿板的长度方向按照线性变化,获得了均匀温度变化时变厚度层合板的临界热屈曲荷载.通过与现有文献的比较验证了本文方法的正确性,并进一步讨论了纤维铺设技术、纤维方向角的变化以及边界条件的不同对变角度复合材料层合板的临界屈曲温度的影响.研究结果表明,在体积相同的情况下,采用CTS铺设较传统的自动丝束铺放(AFP)可以进一步提升变角度层合板的临界屈曲温度.本文的研究结果可为变角度复合材料的设计提供一定的参考.  相似文献   

5.
The buckling behavior of perfect and defective double-walled carbon nanotubes (DWCNTs) under axial compressive, torsional and bending loadings is investigated using a structural mechanics model. The effects of van der Waals (vdW) forces are further modeled using a nonlinear spring element. Critical buckling loads, critical buckling moments and the effects of vacancy defects were studied for armchair nanotubes with various aspect ratios. The results show that vacancy defects greatly reduce the critical buckling load of DWCNTs. The density of defects plays an important role in buckling of DWCNTs. The results of this numerical model are in good agreement with their comparable existing works.  相似文献   

6.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

7.
The size e?ects on the shear buckling behaviors of skew nanoplates made of functionally graded materials(FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated e?ective material properties, various homogenization schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the signi?cance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less signi?cant for a higher value of the material property gradient index. Furthermore,among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the di?erence between them reduces by increasing the aspect ratio of the skew nanoplate.  相似文献   

8.
本文讨论弹性有限长圆柱壳端部受冲击载荷作用,在轴向应力波传播和反射过程中的非对称动态屈曲问题。通过建立和求解扰动方程得到了动态屈曲的分叉条件,临界载荷和屈曲模态。数值结果表明:当壳壁厚不很薄时,轴对称屈曲临界载荷比非轴对称临界载荷高;反之,轴对称临界载荷会比非对称临界载荷低;由于应力波的反射,临界载荷降低,因而更容易发生屈曲,屈曲模态也有其不同特点。  相似文献   

9.
An approximate method is presented in this paper for studying the dynamic buckling of double-walled carbon nanotubes (DWNTs) under step axial load. The analysis is based on the continuum mechanics model, which takes into account the van der Waals interaction between the outer and inner nanotubes. A buckling condition is derived, from which the critical buckling load and associated buckling mode can be determined. As examples, numerical results are worked out for DWNTs under fixed boundary conditions. It is shown that, due to the effect of van der Waals forces, the critical buckling load of a DWNT is enhanced when inserting an inner tube into a single-walled one. The paper indicates that the critical buckling load of DWNTs for dynamic buckling is higher than that for static buckling. The effect of the radii is also examined. In addition, some of the results are compared with the previous ones.  相似文献   

10.
讨论弹性圆柱壳端部受冲击载荷作用,在应力波传播过程中的非对称屈曲问题。通过求解扰动方程得到了动态屈曲的分叉条件、临界载荷和屈曲模态。数值结果表明,当壳壁厚不很薄时,轴对称屈曲临界载荷比非对称临界载荷高;反之,轴对称临界载荷会比非对称临界载荷低。不同的冲击载荷,屈曲模态也将不同。  相似文献   

11.
李康帅  邵永波  杨冬平 《应用力学学报》2020,(2):906-914,I0031,I0032
为研究腐蚀缺陷对管道承载力的影响,本文分别进行了含腐蚀缺陷管道在轴压载荷、弯曲载荷以及轴压和弯曲复合载荷作用下的静力失效过程测试。通过不同载荷作用下管道的荷载-位移曲线以及荷载-应变曲线来分析管道的失效模式和失效机理;通过有限元分析结果与试验测试结果验证其准确性。结果表明:腐蚀缺陷使管道在三种不同荷载作用下的极限承载力均有所下降;针对文中所研究的管道及其腐蚀缺陷,在轴压载荷作用下管道承载力下降了18.4%,在弯曲载荷作用下管道承载力下降了20.96%,在轴压和弯曲复合载荷作用下管道承载力下降了13.3%;管道中腐蚀缺陷位置的管壁厚度减小,该位置应变发展迅速,首先进入塑性屈服状态,最终导致该腐蚀位置发生弹塑性屈曲失效。  相似文献   

12.
等曲率井中有重钻柱屈曲的非线性有限元分析   总被引:3,自引:0,他引:3  
刘峰  王鑫伟 《力学学报》2005,37(5):593-599
建立了等曲率井中有重钻柱屈曲的平衡方程及对应的泛函表达式,用有限元法对等曲率井 中有重钻柱屈曲过程进行了分析,给出了钻柱正弦屈曲和螺旋屈曲临界载荷的定义. 力学模 型中考虑了重力、钻柱上端井斜角和井眼轨迹曲率半径对屈曲的影响. 分析结果表明:载荷 增大时,钻柱的下端先出现局部屈曲,随后屈曲向钻柱上部扩展,导致钻柱发生整体屈曲, 屈曲位移、井壁约束力线密度和钻柱弯矩都呈周期性变化;重力对等曲率井中钻柱的屈曲有 较强的抑制作用,其影响不可忽略;井眼轨迹曲率半径越小,钻柱上端井斜角越大则对钻柱 屈曲的抑制作用越强.  相似文献   

13.
薄壁加筋肋圆柱壳稳定性分析的参数化研究   总被引:1,自引:0,他引:1  
针对在轴向载荷作用下的正置、正交网格形式的薄壁加筋肋圆柱壳结构,利用有限元程序,对薄壁加筋肋圆柱壳稳定性分析进行了参数化研究,得到了进行结构优化设计的准则,对于给定的设计载荷,当结构参数位于某一个局部失稳与整体失稳的临界区域时,结构的重量最轻。提出了基于有限元分析进行结构优化设计的策略,利用优化策略,获得了一薄壁加筋肋圆柱壳结构的优化设计结果,同时给出了粘合刚度简化模型与有限元计算结果的比较。  相似文献   

14.
The paper studies the axisymmetric compressive buckling behavior of multi-walled carbon nanotubes (MWNTs) under different boundary conditions based on continuum mechanics model. A buckling condition is derived for determining the critical buckling load and associated buckling mode of MWNTs, and numerical results are worked out for MWNTs with different aspect ratios under fixed and simply supported boundary conditions. It is shown that the critical buckling load of MWNTs is insensitive to boundary conditions, except for nanotubes with smaller radii and very small aspect ratio. The associated buckling modes for different layers of MWNTs are in-phase, and the buckling displacement ratios for different layers are independent of the boundary conditions and the length of MWNTs. Moreover, for simply supported boundary conditions, the critical buckling load is compared with the corresponding one for axial compressive buckling, which indicates that the critical buckling load for axial compressive buckling can be well approximated by the corresponding one for axisymmetric compressive buckling. In particular, for axial compressive buckling of double-walled carbon nanotubes, an analytical expression is given for approximating the critical buckling load. The present investigation may be of some help in further understanding the mechanical properties of MWNTs.  相似文献   

15.
Experiments on the axial compression buckling of high-quality epoxy cylindrical shells with imposed dimpletype defects are described. Additionally, a technique for the manufacture of high-quality epoxy conical shells which buckle at loads approaching the classical critical load is presented. For both types of shells, prebuckling deformations have been monitored optically. The sizes of defects determined from the optical examination when applied in the space-frame approach to shell buckling have led to predicted knock-down factors which are remarkably consistent with measured knock-down factors (i.e., the ratio of actual collapse to classical critical load).  相似文献   

16.
本文用传递矩阵法在初始缺陷法的概念下对圆柱壳的一端有四个类似集中力的局部轴压作用下的失稳问题进行了研究。  相似文献   

17.
The thermal effect on axially compressed buckling of a double-walled carbon nanotube is studied in this paper. The effects of temperature change, surrounding elastic medium and van der Waals forces between the inner and outer nanotubes are taken into account. Using continuum mechanics, an elastic double-shell model with thermal effect is presented for axially compressed buckling of a double-walled carbon nanotube embedded in an elastic matrix under thermal environment. Based on the model, an explicit formula for the critical axial stress is derived in terms of the buckling modes of the shell and the parameters that indicate the effects of temperature change, surrounding elastic medium and the van der Waals forces. Based on that, some simplified analysis is carried out to estimate the critical axial stress for axially compressed buckling of the double-walled carbon nanotube. Numerical results for the general case are obtained for the thermal effect on axially compressed buckling of a double-walled carbon nanotube. It is shown that the axial buckling load of double-walled carbon nanotube under thermal loads is dependent on the wave number of axially buckling modes. And a conclusion is drawn that at low and room temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube increase as the value of temperature change increases, while at high temperature the critical axial stress for infinitesimal buckling of a double-walled carbon nanotube decrease as the value of temperature change increases.  相似文献   

18.
The size effects on the shear buckling behaviors of skew nanoplates made of functionally graded materials (FGMs) are presented. The material properties are supposed to be changed uniformly from the ceramic phase to the metal one along the plate thickness. To estimate the associated effective material properties, various homogenization schemes including the Reuss model, the Voigt model, the Mori-Tanaka model, and the Hashin-Shtrikman bound model are used. The nonlocal elasticity theory together with the oblique coordinate system is applied to the higher-order shear deformation plate theory to develop a size-dependent plate model for the shear buckling analysis of FGM skew nanoplates. The Ritz method using Gram-Schmidt shape functions is used to solve the size-dependent problem. It is found that the significance of the nonlocality in the reduction of the shear buckling load of an FGM skew nanoplate increases for a higher value of the material property gradient index. Also, by increasing the skew angle, the critical shear buckling load of an FGM skew nanoplate enhances. This pattern becomes a bit less significant for a higher value of the material property gradient index. Furthermore, among various homogenization models, the Voigt and Reuss models in order estimate the overestimated and underestimated shear buckling loads, and the difference between them reduces by increasing the aspect ratio of the skew nanoplate.  相似文献   

19.
This paper deals with an analytical approach of the buckling behavior of a functionally graded circular cylindrical shell under axial pressure with external axial and circumferential stiffeners. The shell properties are assumed to vary continuously through the thickness direction. Fundamental relations and equilibrium and stability equations are derived using the third-order shear deformation theory. The resulting equations are employed to obtain the closed-form solution for the critical buckling loads. A simply supported boundary condition is considered for both edges of the shell. The comparison of the results of this study with those in the literature validates the present analysis. The effects of material composition (volume fraction exponent), of the number of stiffeners and of shell geometry parameters on the characteristics of the critical buckling load are described. The analytical results are compared and validated using the finite-element method. The results show that the inhomogeneity parameter, the geometry of the shell and the number of stiffeners considerably affect the critical buckling loads.  相似文献   

20.
The buckling behavior of monolayer graphene (pristine and vacancy-defected) and bilayer graphene (pristine) loaded in the armchair direction was simulated for different boundary conditions using a truss FE model, representing the exact atomic lattice of graphene, and a FE model of an equivalent 2D plate. The critical buckling stress of pristine monolayer graphene was derived as a function of aspect ratio. The results from the two FE models coincide and are in very good agreement with established analytical solutions. With increasing the aspect ratio, the critical buckling stress of monolayer graphene decreases until the value of 2 from which the effect starts to diminish. Using the truss FE model, the effect of randomly dispersed vacancies on the critical buckling stress and buckling mode of monolayer graphene was studied. It was found that the critical buckling stress decreases dramatically with increasing the defect density: for a defect density of 10%, the critical buckling stress decreases by almost 50%. Moreover, the presence of defects was found to affect the highest buckling modes (above 3) even at low densities. Bilayer graphene has a totally different critical buckling stress than monolayer graphene due to the effect of van der Waals forces which depends on the applied boundary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号