首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlinear interactions of vortex rings with a free surface are considered in an incompressible, ideal fluid using the vortex contour dynamics technique and the boundary integral equation method. The flow is axisymmetric and the vorticity is linearly distributed in the vortex. Effects of the gravity and the surface tension as well as the initial geometric parameter of the vortex on the interaction process are investigated in considerable detail. The interaction process may be divided into three major stages: the vortex free-traveling stage, the collision stage, and the vortex stretching and rebounding stage. Time evolutions of both the vortex and free surface under various conditions are provided and analyzed. Two kinds of waves exist on the free surface during interaction. In a special case where the gravity and surface tension are very weak or the vortex is very strong, an electric-bulb-like ‘cavity’ is formed on the free surface and the vortex is trapped in the ‘cavity’ for quite a long time, resulting in a large amount of fluid above the mean fluid surface. The project supported by the National Education Commission of China and NASA under cooperative grant agreement # NCC5-34  相似文献   

2.
Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both “passage” and “collision” (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.  相似文献   

3.
We present inviscid and viscous models for the formation and propagation of single, and co-axial pairs of, vortex rings. Inviscid flows are based on both thin rings, and thick rings treated by a contour dynamics approach, whilst viscous flows are determined from numerical solutions of the Navier–Stokes equations. A kaleidoscope of different flow behaviours for these axisymmetric flows is presented.  相似文献   

4.
An investigation of the flow resulting from the collision of two spheres at low Reynolds numbers is presented. Each sphere starts from rest and traverses a distance of 5 sphere diameters to the point of contact. Experimental and numerical results are compared for a symmetric collision; that is, a collision between two spheres of the same diameter and travelling with the same velocity. The flow consists of two axisymmetric recirculation zones which become a pair of colliding vortex rings, expanding radially from the collision point. Several examples of unbalanced collisions are also presented numerically, with one or both of the velocity and diameter of the spheres altered. These collisions break the symmetry, altering the post-collision expansion of the vortex rings.  相似文献   

5.
Vortex sound   总被引:1,自引:0,他引:1  
Vortex motion is the only source of aerodynamic sound production in low Mach number flow: the unsteady part of the vorticity distribution contributes linearly to the sound field. The following fundamental model flows, which illustrate the vorticity as the predominant sound source in unsteady flows, are discussed: An initially planar elliptic vortex; two identical coaxial initially elliptic vortex rings, where a special case is the leap-frogging of two identical circular rings. For head-on collision of two identical circular vortex rings and for several cases of vortex-body interaction good agreement between theory and experiment exists. If the Mach number is not low, other mechanisms have also to be considered. Here the theory is not yet fully developed. Experimental results for a vortex-airfoil interaction in transonic flow show that local flow separation and boundary layer as well as compressibility effects play a basic role. However, if the motion of vorticity would be known in subsonic flow, essential parts of the sound field could be calculated by the theory. — In addition, it is shown that the general theory is well suited to provide a better understanding of the scattering of sound waves by vortex motion, at least for long wave lengths.  相似文献   

6.
In this paper, a new 2-D vortex method is developed, which treats the vorticity diffusion in a deterministical way. The Laplacian operator, which describes vorticity diffusion, is approximated by a contour integral. The numerical results of two model problems show that this method has a good accuracy. A primary error estimation is given, and the self-adaptive vortex blob and the boundary conditions are discussed. The project supported by the National Natural Science Foundation of China  相似文献   

7.
A new model is proposed for the entrainment rate by vortices across stratified interfaces. In the model, different entrainment regimes are distinguished by the conventional parameters Richardson, Reynolds, and Schmidt number as well as a new parameter, the “vortex persistence”. Vortex persistence is defined as the number of rotations a vortex makes during the time it moves its own diameter with respect to the interface. It is further proposed that the concept of vortex persistence is important whenever a vortex is near any kind of surface, either stratified or solid. The model is in accord with most field and laboratory observations in a variety of stratified and bounded flows, including measurements of wall heat transfer and vortex formation in starting jets.  相似文献   

8.
J. E. Martin  E. Meiburg 《Meccanica》1994,29(4):331-341
We investigate the mechanisms of vorticity concentration, reorientation and stretching in a swirling jet, whose dynamics is dominated by the competition of a Kelvin-Helmholtz-type vortex sheet instability and a centrifugal Rayleigh instability. To this end, we employ an inviscid Lagrangian vortex filament technique. It is found that the axial jet velocity profile breaks the symmetry of the pure swirling flow. Conversely, the swirl is seen to modify the case dominated by a Kelvin-Helmholtz instability in that it results in the formation of counterrotating vortex rings. A pinch-off mechanism is observed which leads to a dramatic decrease in the local jet diameter. Furthermore, the vortex ring circulation is seen to be time dependent.
Sommario In questo lavoro si analizza la dinamica della vorticità in un setto rotante in cui siano presenti, ed in competizione reciproca, fenomeni di instabilità di Kelvin-Helmholtz e di Rayleigh. A tale scopo si adotta una metodologia di soluzione non viscosa, Lagrangiana a filamenti vorticosi. Viene mostrato come il profilo di velocità assiale del getto altera la simmetria del moto di pura rotazione. Viceversa, la presenza della rotazione modifica il flusso dominato dall'instabilità di Kelvin-Helmholtz attraverso la formazione di anelli vorticosi controrotanti. L'interazione di questi due campi di velocità porta sia ad una considerevole riduzione del diametro locale del getto, sia ad una variazione temporale della circolazione degli anelli vorticosi.
  相似文献   

9.
The unsteady motions of an inviscid vortex under the influence of a cylinder pair in the presence of a low Mach number mean flow and the corresponding sound generation are examined in the present study. The two cylinders are in close proximity. A semi-analytical approach using the conformal mapping together with the potential theory is adopted. The results show that the vortex will interact intensively with the cylinders under the right combinations of mean flow direction and initial vortex position. Such interactions result in a high rate of change of vortex propagation velocity, strong fluctuating forces on cylinder and strong sound radiations. However, it is found that much stronger acoustic energy radiation will result when the vortex approaches the cylinder pair from the bottom than from the top, unless the mean flow is nearly perpendicular to the horizontal cylinder pair axis. Stronger sound radiation is also observed for the identical cylinder cases in general, except the flow direction is close to some critical values.  相似文献   

10.
Near wake vortex dynamics of a hovering hawkmoth   总被引:1,自引:0,他引:1  
Numerical investigation of vortex dynamics in near wake of a hovering hawkmoth and hovering aerodynamics is conducted to support the development of a biology-inspired dynamic flight simulator for flapping wingbased micro air vehicles. Realistic wing-body morphologies and kinematics are adopted in the numerical simulations. The computed results show 3D mechanisms of vortical flow structures in hawkmoth-like hovering. A horseshoe-shaped primary vortex is observed to wrap around each wing during the early down- and upstroke; the horseshoe-shaped vortex subsequently grows into a doughnut-shaped vortex ring with an intense jet-flow present in its core, forming a downwash. The doughnut-shaped vortex rings of the wing pair eventu- ally break up into two circular vortex rings as they propagate downstream in the wake. The aerodynamic yawing and rolling torques are canceled out due to the symmetric wing kinematics even though the aerodynamic pitching torque shows significant variation with time. On the other hand, the time- varying the aerodynamics pitching torque could make the body a longitudinal oscillation over one flapping cycle.  相似文献   

11.
12.
R. Verzicco  P. Orlandi 《Meccanica》1994,29(4):383-391
The oblique collision of a vortex ring with a solid wall, atRe=/=1389, has been analysed by the direct simulation of the Navier-Stokes equations in Cartesian coordinates. In accordance with a previous experimental study [1], the secondary vorticity produced at the wall is organized into a loop-like vortex in the region of the ring furthest away from the wall. As the ring approaches the wall, the region closest is subjected to a high rate of stretching which increases the vorticity in the core. The vorticity gradients along the core generate bi-helical vortex lines continually displaced towards the region of the ring furthest away from the wall. The analysis of the vorticity and straining fields revealed that the pressure gradient along the core is responsible for the convective motion that displaces these vortex lines and accumulates secondary vorticity in the region far from the wall. This vorticity rolls up and forms a secondary structure which by self-induction moves away from the wall.The fundamental role of the differential stretching has been demonstrated by comparing the case of oblique collision with that of normal collision and with the collision of a two-dimensional vortex pair with an oblique wall.
Sommario L'interazione di un vortice ad anello con una parete obliqua, aRe=1389, è stata analizzata mediante la simulazione diretta delle equazioni di Navier-Stokes in coordinate cartesiane. In accordo con un precedente esperimento [1] è stato evidenziato che la vorticità secondaria, prodotta alla parete, si organizza in una strutura vorticosa a loop nella regione dell'anello più lontana dalla parete. Quando il vortice si avvicina alla parete, la parte più vicina è soggetta ad un'elevata deformazione che aumenta il valore della vorticità nel core. La distribuzione non uniforme di vorticità lungo il core del vortice genera delle linee di vorticità elicoidali che vengono transportate verso la regione dell'anello più lontana dalla parete. L'analisi dei campi di vorticità e di deformazione ha rivelato che il gradiente di pressione, dovuto al campo di deformazione non uniforme lungo il core del vortice, è responsabile di un moto convettivo che trasporta le linee di vorticità ed accumula la vorticità secondaria nella regione del vortice più lontana dalla parete, dove la struttura secondaria viene generata.Il ruolo fondamentale della deformazione non uniforme è stato evidenziato mediante il confronto della collisione obliqua coni casi di collisione normale e di collisione di una coppia di vortici bidimensionali con una parete obliqua.
  相似文献   

13.
高机动飞行器非指令运动及其控制的研究进展   总被引:1,自引:0,他引:1  
高机动飞行器往往都是通过大攻角飞行来实现高机动科目的, 在发展高机动飞行器的过程中, 其非指令运动是伴随着大攻角飞行而常常出现的运动形态. 为此, 应在飞行器设计的早期阶段, 充分研究所设计布局的大攻角流动性态及其相应的非指令运动的形态;揭示这类运动形态的主控流动;在此基础上形成和发展流动控制新技术, 以达到抑制非指令运动的目的. 由于大攻角前体非对称涡往往与非指令运动密切相关, 为此本文首先指出前体非对称涡流动对头部微扰动十分敏感, 以致长期以来让人们误认为这类流动具有不确定性. 研究表明, 通过设置人工微扰动可使前体非对称涡流动具有可重复性, 并揭示该流动随扰动周向角变化的响应、演化规律. 通过利用大、小后掠翼两类翼身组合体的典型布局形式, 研究它们所呈现的摇滚运动形态, 揭示其摇滚运动的不同主控流动机理, 在此基础上分别发展了抑制小、大后掠翼身组合体摇滚运动的流动控制技术: 快速旋转头部扰动和适当设置扰动位使翼、身的两对非对称涡处于反相. 在抑制非指令运动的研究中, 深入理解和揭示头部微扰动对非对称涡流动的响应、演化机理是至关重要的, 应予以特别关注.  相似文献   

14.
The motion of a quasigeostrophic, equivalent-barotropic, initially circular vortex patch near an infinitely long topographic escarpment is studied using f-plane dynamics. There are two time scales in the problem: the advective time scale associated with the vortex, and the time scale for topographic vortex stretching. Analytical progress is possible when these two time scales are well-separated and results are presented here.If topographic vortex stretching dominates advection by the vortex the vortex is said to be ‘weak’. The vortex patch remains circular on the topographic time scale, and dispersive topographic waves rapidly propagate the initial disturbance away from the vicinity of the vortex. Subsequently cross-isobath motion is inhibited, and the vortex moves as though the escarpment were a plane wall. The same behaviour was observed for the motion of a weak singular vortex near an escarpment by Dunn, McDonald and Johnson [7], who named the phenomenon the ‘pseudoimage’ of the vortex.If advection dominates over topographic effects, the vortex is said to be ‘intense’. The vortex also remains circular to leading order, but the relative vorticity produced by the swirl of the vortex is less able to escape the vicinity of the vortex. The vortex follows a similar curved trajectory to those observed for intense vortices on the β-plane. The dipolar mechanism for this behaviour is described. Large time solutions are inhibited by the form of the escarpment topography, but examination of the equations leads to the conclusion that the leading order solution may be predict the motion for times beyond its formal range of validity.  相似文献   

15.
We present direct numerical simulations of the interaction between a vortex ring and a stationary sphere for Re = 2,000. We analyze the vortex dynamics of the ring as it approaches the sphere surface, and the boundary layer formed on the surface of the sphere undergoes separation to form a secondary vortex ring. This secondary vortex ring can develop azimuthal instabilities, which grow rapidly as it interacts with the primary ring. The azimuthal instabilities on both rings are characterized by analysis of the azimuthal component decomposition of the axial vorticity.  相似文献   

16.
The evolution of single elliptic vortex rings for initial aspect ratio (AR)=2,4,6 has been studied. The incompressible Navier-Stokes equations are solved by a dealiased pseudo-spectral method with 643 grid points in a periodic cube. We find that there are three kinds of vortex motion asAR increases and bifurcation occurs at certainAR. The processes of advection, interaction and decay of vortex ring are discussed. Numerical results coincide with experiments and other authors' numerical simulation. The project is supported by National Natural Science Foundation of China and Doctoral Program of Institution of Higher Education  相似文献   

17.
It is well documented that a trailing vortex pair approaching the ground, and a vortex ring colliding head-on with a rigid plane, experience a reversal in axial velocity which is commonly referred to as rebound. One explanation of this phenomenon suggests that it is essentially an inviscid process due to the effect of the finite core-size, whereas another and more widely accepted explanation attributes it to the influence of a secondary vortex which is generated at the surface by viscous effects. The aim of this paper is to assess experimentally the validity of these competing explanations. To achieve this, flow visualization studies of the collision of a vortex ring with a wall are compared with those of the head-on collision of two identical rings. The head-on collision is designed to mimic the inviscid, free-slip case of a ring/wall interaction. This paper describes the experimental findings.A version of this paper was presented at the 10th Australasian Fluid Mechanics Conference, University of Melbourne, Australia, 11–15 December 1989  相似文献   

18.
Particle-laden water flows past a circular cylinder were numerically investigated. The discrete vortex method (DVM) was employed to evaluate the unsteady water flow fields and a Lagrangian approach was applied for tracking individual solid particles. A dispersion function was defined to represent the dispersion scale of the particle. The wake vortex patterns, the distributions and the time series of dispersion functions of particles with different Stokes numbers were obtained. Numerical results show that the particle distribution in the wake of the circular cylinder is closely related to the particle's Stokes number and the structure of wake vortices: (1) the intermediate sized particles with Stokes numbers, St, of 0.25, 1.0 and 4.0 can not enter the vortex cores and concentrate near the peripheries of the vortex structures, (2) in the circular cylinder wake, the dispersion intensity of particles decreases as St is increased from 0.25 to 4.0.  相似文献   

19.
基于多学科理论建立了极端环境下球锥体烧蚀、剥蚀的数理模型。利用离散涡方法计算流场与球锥表面压力分布,采用三方程烧蚀模型计算热化学控制机制下的烧蚀速率;引入颗粒轨道模型求解剥蚀颗粒的运动,编程计算高温高压燃烧室内球锥形烧蚀试件的绕流场及剥蚀颗粒的运动轨迹。研究表明:烧蚀对球锥体的绕流影响显著,球锥体的涡云较快地转变为不对...  相似文献   

20.
由仿生学原理构建的可渗透翼型对湍流气动噪声抑制作用已展现良好的应用前景。对NACA 0012可渗透翼型和实体翼型进行了数值计算,得到了声涡相互作用下气动噪声声场和流场,分析了可渗透壁对翼型流场和声场的影响。研究表明,相对实体翼型,可渗透壁通过减小声源强度降低了主纯音噪声声压级幅值和远场总声压级,消除了高阶离散纯音,但对噪声的指向性没有较大改变。进一步的流场分析表明,可渗透壁对翼型气动性能影响不大的情况下能够降低边界层扰动和翼型后缘大尺度涡旋强度,并推迟分离泡转捩和再附位置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号