首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We develop a general solution method for a dynamically accelerating crack under anti-plane shear conditions along the interface between two different homogeneous isotropic elastic materials. The crack is initially at rest, and after loading is applied the crack-tip speed which may accelerate up to the shear wave speed of the more compliant material. The analysis includes an exact, closed-form expression for the stress intensity factor for an arbitrary time-dependent crack-face traction, as well as expressions for computing the crack-face displacements and the stress in front of the crack. We also present some numerical examples for fixed loads and for loads moving with the crack tip, using a stress intensity factor fracture criterion, in order to examine the predicted effect of material mismatch on interfacial fracture.  相似文献   

2.
Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge-Andrews mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the shear wave speed in front of the main crack. We find that sub-Rayleigh-to-intersonic transition and sustained intersonic propagation occurs in a number of other models that subject developing cracks to intersonic loading fields. We consider a spontaneously expanding sub-Rayleigh crack (or main crack) which advances, along a planar interface with linear slip-weakening friction, towards a place of favorable heterogeneity, such as a preexisting subcritical crack or a small patch of higher prestress (similar behavior is expected for a small patch of lower static strength). For a range of model parameters, a secondary dynamic crack nucleates at the heterogeneity and acquires intersonic speeds due to the intersonic stress field propagating in front of the main crack. Transition to intersonic speeds occurs directly at the tip of the secondary crack, with the tip accelerating rapidly to values numerically equal to the Rayleigh wave speed and then abruptly jumping to an intersonic speed. Models with favorable heterogeneity achieve intersonic transition and propagation for much lower prestress levels than the ones implied by the Burridge-Andrews mechanism and have transition distances that depend on the position of heterogeneity. We investigate the dependence of intersonic transition and subsequent crack propagation on model parameters and discuss implications for earthquake dynamics.  相似文献   

3.
A recent experimental study has demonstrated the attainability of intersonic shear crack growth along weak planes in otherwise homogeneous, isotropic, linear elastic solids subjected to remote loading conditions (Rosakis et al., Science 284 (5418) (1999) 1337). The relevant experimental observations are summarized briefly here and the conditions governing the attainment of intersonic crack speeds are examined. Motivated by experimental observations, subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone is subsequently analyzed. A cohesive law is assumed, wherein the cohesive shear traction is either a constant or varies linearly with the local sliding rate. Complete decohesion is assumed to occur when the crack tip sliding displacement reaches a material-specific critical value. Closed form expressions are obtained for the near-tip fields. With a cohesive zone of finite size, it is found that the dynamic energy release rate is finite through out the intersonic regime. Crack tip stability issues are addressed and favorable speed regimes are identified. The influence of shear strength of the crack plane and of a rate parameter on crack propagation behavior is also investigated. The isochromatic fringe patterns predicted by the analytical solution are compared with the experimental observations of Rosakis et al. (1999) and comments are made on the validity of the proposed model.  相似文献   

4.
A novel experimental technique is developed for time-resolved detection and tracking of damage in the forms of delamination and matrix cracking in layered materials such as composite laminates. The technique is non-contact in nature and uses dual or quadruple laser interferometers for high temporal resolution. Simultaneous measurements of differential displacement and velocity at individual locations are obtained to analyze the initiation and progression of interfacial fracture and/or matrix cracking/delamination in a polymer matrix composite laminate system reinforced by graphite fibers. The measurements at multiple locations allow the speeds at which interfacial crack front (mode-I) or matrix cracking/delamination front (mode-II dominated) propagates to be determined. Experiments carried out use three-point bend configurations. Impact loading is achieved using a modified Kolsky bar apparatus with a complete set of diagnostics for load, deformation, deformation rate, and input energy measurement. This technique is used to characterize the full process of damage initiation and growth. The experiments also focused on the quantification of the speed at which delamination or damage propagates under primarily mode-I and mode-II conditions. The results show that the speed of delamination (mode-I) or the speed of matrix cracking/delamination (primarily mode-II) increases linearly with impact velocity. Furthermore, speeds of matrix failure/delamination under primarily mode-II conditions are much higher than the speeds of mode-I crack induced delamination under mode-I conditions.  相似文献   

5.
An anisotropic cohesive model of fracture is applied to the numerical simulation of Coker and Rosakis experiments (2001). In these experiments, a unidirectional graphite–epoxy composites plate was impacted with a projectile, resulting in an intersonic shear-dominated crack growth. The simulations account for explicit crack nucleation––through a self-adaptive remeshing procedure––crack closure and frictional sliding. The parameters used in the cohesive model are obtained from quasi-static fracture experiments, and successfully predict the dynamic fracture behavior. In keeping with the experiments, the calculations indicate that there is a preferred intersonic speed for locally steady-state growth of dynamic shear cracks, provided that sufficient energy is supplied to the crack tip. The calculations also show that the crack tip can attain speeds in the vicinity of the longitudinal wave speed in the direction of the fibers, if impacted at higher speeds. In addition, a double-shock which emanates from a finite size contact region behind the crack tip is observed in the simulations. The predicted double-shock structure of the near-tip fields is in close agreement with the experimental observations. The calculations additionally predict the presence of a string of surface hot spots which arise following the passage of the crack tip. The observed and computed hot spot structures agree both in geometry as well as in the magnitude of the temperature elevation. The analysis thus suggests intermittent friction as the origin of the experimentally observed hot spots.  相似文献   

6.
Frictional sliding along an interface between two identical isotropic elastic plates under impact shear loading is investigated experimentally and numerically. The plates are held together by a compressive stress and one plate is subject to edge impact near the interface. The experiments exhibit both a crack-like and a pulse-like mode of sliding. Plane stress finite element calculations modeling the experimental configuration are carried out, with the interface characterized by a rate and state dependent frictional law. A variety of sliding modes are obtained in the calculations depending on the impact velocity, the initial compressive stress and the values of interface variables. For low values of the initial compressive stress and impact velocity, sliding occurs in a crack-like mode. For higher values of the initial compressive stress and/or impact velocity, sliding takes place in a pulse-like mode. One pulse-like mode involves well-separated pulses with the pulse amplitude increasing with propagation distance. Another pulse-like mode involves a pulse train of essentially constant amplitude. The propagation speed of the leading pulse (or of the tip of the crack-like sliding region) is near the longitudinal wave speed and never less than times the shear wave speed. Supersonic trailing pulses are seen both experimentally and computationally. The trends in the calculations are compared with those seen in the experiments.  相似文献   

7.
Ultrasonic wave speed measurements are widely used to infer the elastic properties of solids. In the standard method, longitudinal and shear transducers are used separately to measure the corresponding wave speeds in a material. A new experimental method is introduced for simultaneously measuring the longitudinal and the shear wave speeds using a single set of longitudinal or shear transducers. The method can also be used to measure the wave speeds in situ during deformation by placing the transducers along the loading axis. The transducers are housed in a specially designed fixture such that they are not subjected to loading. The technique is demonstrated by performing uniaxial compression experiments on fully dense isotropic solids (where the wave speeds are not expected to change during deformation) and in polymeric foams (where the wave speeds are affected by damage).  相似文献   

8.
A nonuniform crack growth problem is considered for a homogeneous isotropic elastic medium subjected to the action of remote oscillatory and static loads. In the case of a plane problem, the former results in Rayleigh waves propagating toward the crack tip. For the antiplane problem the shear waves play a similar role. Under the considered conditions the crack cannot move uniformly, and if the static prestress is not sufficiently high, the crack moves interruptedly. For fracture modes I and II the established, crack speed periodic regimes are examined. For mode III a complete transient solution is derived with the periodic regime as an asymptote. Examples of the crack motion are presented. The crack speed time-period and the time-averaged crack speeds are found. The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An issue concerning two equivalent forms of the general solution is discussed.  相似文献   

9.
We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.  相似文献   

10.
Material characterization at high strain rates under simultaneous compression and shear loading has been a challenge due to the differing normal and shear wave speeds. An experimental technique utilizing the compression Kolsky bar apparatus was developed to apply dynamic compression and shear loading on a specimen nearly simultaneously. Synchronization between the compression and shear loading was realized by generating the torsion wave near the specimen which minimizes the time difference between the arrival of the compression and torsion waves. This modified Kolsky bar makes it possible to characterize the dynamic response of a material to combined compression and shear impact loading. This method can also be applied to study dynamic friction behavior across an interface under controlled loading conditions. The feasibility of this method is demonstrated in the dynamic characterization of a simulant polymer bonded explosive material.  相似文献   

11.
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113–2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent ?1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.  相似文献   

12.
塑性动态断裂实验研究   总被引:1,自引:0,他引:1  
朱锡  华天瑞 《实验力学》1990,5(4):429-439
本文利用自制的实验装置,对韧性材料在爆炸冲击载荷作用下的塑性动态断裂特性,进行了实验研究,其中包括高塑性应变速率下,塑性区裂纹扩展过程和扩展速度的测试;塑性动态断裂韧性CTOD,及其在不同裂纹扩展速度下变化规律的测试。同时,对不同裂纹扩展速度的试件断口进行微观分析。  相似文献   

13.
An improved method based on the first-order shear deformable plate theory is developed to calculate the energy release rate and stress intensity factor for a crack at the interface of a bi-layer structure. By modeling the uncracked region of the structure as two separate Reissner-Mindlin plates bonded perfectly along the interface, this method is able not only to take into account the shear deformation in the cracked region, but also to capture the shear deformation in the uncracked region of the structure. A closed form solution of energy release rate and mode decomposition at the interface crack is obtained for a general loading condition, and it indicates that the energy release rate and stress intensity factor are determined by two independent loading parameters. Compared to the approach based on the classical plate theory, the proposed method provides a more accurate prediction of energy release rate as well as mode decomposition. The computational procedures introduced are relatively straightforward, and the closed form solution can be used to predict crack growth along the layered structures.  相似文献   

14.
A semi-infinite crack along the interface of two dissimilar half-spaces extends under in-plane loading. Each half-space belongs to a class of orthotropic or transversely isotropic elastic materials, the crack can extend at any constant speed, and all six possible relations between the four body wave speeds are considered. A steady dynamic situation is treated, and exact full displacement fields derived. A key step is a factorization that produces, despite anisotropy, simple solution forms and compact crack speed-dependent functions that exhibit the Rayleigh and Stoneley speeds as roots. These roots are calculated for various representative bimaterials.Closed-form crack opening displacement gradient and interface stress fields are also derived from a general set of coupled singular integral equations. The equation eigenvalues can, depending on crack speed, be complex/imaginary conjugates, purely real, or zero. This suggests possibilities observed in other studies: oscillations and square-root singular behavior at the crack edge, non-singular behavior, singular behavior not of square-root order, and the radiation of displacement gradient discontinuities at crack speeds beyond the purely sub-sonic range.These possibilities are explored further in terms of two important special cases in Part II of this study [Int. J. Solids Struct., 39, 1183–1198].  相似文献   

15.
A laser interferometry-based technique was developed to locally measure the in-plane components of particle velocity in dynamic experiments. This technique was applied in the experimental investigation of dynamic sliding along the incoherent (frictional) interface of a Homalite–steel bimaterial structure. The bimaterial specimen was subjected to uniform compressive stress and impact-induced shear loading. The evolution of the dynamic stress field was recorded by high-speed photography in conjunction with dynamic photoelasticity. The combination of the full-field technique of photoelasticity with the local technique of velocimetry was proven to be a very powerful tool in the investigation of dynamic sliding. A relatively broad loading wave with an eye-like structure emanated from the interface. The particle velocity measurements established that sliding started behind the eye-like fringe pattern. It propagated with supershear speed with respect to Homalite. A shear Mach line originating from the sliding tip is visible in the photoelastic images. A vertical particle velocity measurement revealed the existence of a wrinkle-like pulse traveling along the bimaterial interface. The wrinkle-like pulse followed the initial shear rupture tip and propagated at a specific subshear speed.  相似文献   

16.
A new experimental technique for accelerated fatigue crack growth tests was recently developed (Du et al., 2001). The technique, which uses piezoelectric actuators, enables application of cyclic loading at frequencies several orders higher than that by mechanical loading. However, the validity of this technique relies on the equivalence between piezoelectric and mechanical loading. In this paper, the behavior of an interfacial crack between a piezoelectric material and an elastic material under in-plane electric loading is studied. The displacement mismatch along a bonded interface due to electric potential loading on the piezoelectric material is modeled by inserting an array of uniformly distributed dislocations along the interface. By means of Fourier transformation methods, the governing equations are converted to an integral equation, which is then converted to a standard Hilbert problem. A closed form solution for stresses, electric field, and electric displacements along the bonded interface is obtained. The results agree very well with those obtained from numerical simulations. The results show that the closed form solution is accurate not only for far field distributions of stresses and electric variables, but also for the asymptotic distributions near the crack tip. The solution also suggests the likelihood of domain switching in the piezoelectric material near the crack tip, a process that may influence the interfacial fracture resistance.  相似文献   

17.
Sudden jumps in the crack tip velocity were revealed by numerical simulation (in both continuum/cohesive element and molecular dynamics approaches) and experiments for rapid shear cracking. The cracking velocity may accelerate from a sub-Rayleigh speed to the intersonic range, or from an intersonic speed to a higher one, when the reflected impact wave reloads the crack tip. On the other hand, the cracking velocity may decelerate from an intersonic speed to a lower one or recede to the sub-Rayleigh range when the fracture driving force declines. The velocity change encountered during intersonic cracking plays a different role from that in the acceleration or deceleration of a subsonic crack. A crack propagating at an intersonic speed would leave a shear wave trailing behind. When the crack decelerates or accelerates, the effect of the trailing wave will lead to a transition period from one steady-state solution of crack tip singularity to another. This investigation aims at quantifying these processes. The full field solution of an intersonic mode II crack whose speed changed suddenly from one velocity (intersonic or subsonic) to another (intersonic or subsonic) is given in closed form. The solution is facilitated via superposing a series of propagating crack problems that are loaded by dislocations to seal the unwanted crack-face sliding or by concentrated forces moving at various speeds to negate the crack-face traction. In contrast to the subsonic solution, the results in the intersonic case indicate that the elastic fields around the crack tip depend on the deceleration or acceleration history that is traced back over a long time. Singularity matching dictates the jump that may actually take place.  相似文献   

18.
The phenomenon of interfacial fracture, as manifested by atomistic cleavage, debonding and dislocation emission provides a challenge for combined atomistic-continuum analysis. As a precursor for fully coupled atomistic-continuum simulation[1] of interfacial fracture, we focus here on the atomistic behavior within a nanoscopic core surrounding the crack tip. The inter-atomic potential under Embedded Atom Method is recapitulated to form an essential framework of atomistic simulation. The calculations are performed for a side-cracked disc configuration under a remoteK field loading. It is revealed that a critical loading rate defines the brittle-to-ductile transition of homogeneous materials. We further observe that the near tip mode mixity dictates the nanoscopic profile near an interfacial crack tip. A zigzag interface structure is simulated which plays a significant role in the dislocation emission from an interfacial crack tip, as will be explored in the second part of this investigation. The project supported by the National Natural Science Foundation of China  相似文献   

19.
The effect of loading rate on the dynamic fracture properties and the failure mechanisms of glass fiber-reinforced composite materials under mode I fracture is studied. Dynamic reflective caustic experiments are carried out for two loading rates. By measuring the characteristic dimensions of the shadow spots during the caustic experiments, the dynamic SIFs are calculated for different loading rates. The experimental results indicate that the dynamic fracture toughness Kid increases remarkably with increasing loading rate, and the crack grows faster under the high-velocity impact. Moreover, by examining the crack growth routes and the fracture surfaces, it is shown that the loading rate also greatly affects the failure mechanisms at micro-scale.  相似文献   

20.
The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic–viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness against further expansion of the tube. The rate dependence of the necking behavior gives noticeable differences in neck development for slow loading versus fast loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号