首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An analytical model for a time dependent two dimensional flow around a moving profile is developed. The model is suitable for fast aerodynamic and aeroelastic coupling calculations. It determines the inviscid pressure distribution in the vicinity of one blade and the force on the blade in arbitrary two dimensional motion. The method is more flexible than previous analysis: it can represent any profile, pitching motion and blade attachment position. The method is based on conformal mapping techniques and Laurent's series decomposition and is faster and more accurate than standard panel methods. A main idea is to directly treat the singularities of the flow in a mapped plane where any geometrical plane is simplified to a circle. The vorticity is assumed to be shed in the form of a continuous vortex sheet near the trailing edge.  相似文献   

2.
3.
The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.  相似文献   

4.
王嗣强  季顺迎 《力学学报》2018,50(5):1081-1092
基于连续函数包络的超二次曲面单元可有效地描述自然界和工业生产中的非球体颗粒形态, 并通过非线性迭代方法精确计算单元间的接触力. 对于具有复杂几何形态的超二次曲面单元, 线性接触模型不能准确地计算不同接触模式下的作用力. 考虑超二次曲面单元相互作用时不同颗粒形状及表面曲率的影响, 本文发展了相应的非线性黏弹性接触模型. 该模型将不同接触模式下的法向刚度和黏滞力统一表述为单元间局部接触点处等效曲率半径的函数; 切向接触作用则借鉴基于Mohr-Coulomb摩擦定律的球体单元非线性接触模型的计算方法. 为检验超二次曲面单元接触模型的可靠性, 对球形颗粒间的法向碰撞、椭球体颗粒间的斜冲击过程、圆柱体的静态堆积和椭球体的动态卸料过程进行离散元模拟, 并与有限元数值结果及试验结果进行对比验证. 计算表明, 考虑接触点处等效曲率半径的超二次曲面非线性接触模型可准确地计算单元间的接触碰撞作用, 并合理地反映非球形颗粒体系的运动规律. 在此基础上进一步分析了不同长宽比和表面尖锐度对卸料过程中颗粒流动特性的影响, 为非球形颗粒材料的流动特性分析提供了一种有效的离散元方法.   相似文献   

5.
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles.Typical particles are selected representing three kinds of particle motion:a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.  相似文献   

6.
This paper deals with a critical evaluation of various finite element models for low-viscosity laminar incompressible flow in geometrically complex domains. These models use Galerkin weighted residuals UVP, continuous penalty, discrete penalty and least-squares procedures. The model evaluations are based on the use of appropriate tensor product Lagrange and simplex quadratic triangular elements and a newly developed isoparametric Hermite element. All of the described models produce very accurate results for horizontal flows. In vertical flow domains, however, two different cases can be recognized. Downward flows, i.e. when the gravitational force is in the direction of the flow, usually do not present any special problem. In contrast, laminar flow of low-viscosity Newtonian fluids where the gravitational force is acting in the direction opposite to the flow presents a difficult case. We show that only by using the least-squares method in conjunction with C1-continuous Hermite elements can this type of laminar flow be modelled accurately. The problem of smooth isoparametric mapping of C1 Hermite elements, which is necessary in dealing with geometrically complicated domains, is tackled by means of an auxiliary optimization procedure. We conclude that the least-squares method in combination with isoparmetric Hermite elements offers a new general-purpose modelling technique which can accurately simulate all types of low-viscosity incompressible laminar flow in complex domains.  相似文献   

7.
Y.Q. Feng  A.B. Yu 《Particuology》2008,6(6):549-556
The dynamic behavior of individual particles during the mixing/segregation process of particle mixtures in a gas fluidized bed is analyzed. The analysis is based on the results generated from discrete particle simulation, with the focus on the trajectory of and forces acting on individual particles. Typical particles are selected representing three kinds of particle motion: a flotsam particle which is initially at the bottom part of the bed and finally fluidized at the top part of the bed; a jetsam particle which is initially at the top part of the bed and finally stays in the bottom de-fluidized layer of the bed; and a jetsam particle which is intermittently joining the top fluidized and bottom de-fluidized layers. The results show that the motion of a particle is chaotic at macroscopic or global scale, but can be well explained at a microscopic scale in terms of its interaction forces and contact conditions with other particles, particle-fluid interaction force, and local flow structure. They also highlight the need for establishing a suitable method to link the information generated and modeled at different time and length scales.  相似文献   

8.
The motion of a projectile impact onto a granular target results in both the resistance force exerted on the projectile and rheology of granular media. A horizontal arrangement of cylinder quasistatically and dynamically intruding into granular media under different velocities and angles is simulated using discrete element method. Three distinguished drag force regimes are exhibited, including hydrostatic-like force independent of velocity, viscous force related to velocity, and inertial drag force proportional to the square of velocity. Meanwhile, the influence of penetration angles on drag force is examined for these three regimes, and a force model, which is related to penetration depth and angle, is proposed for quasi-static penetration. Then, flow characteristics of the granular media, such as velocity field, pressure field, packing fraction etc., are traced, and a rheology model of packing fraction and inertial number is established.  相似文献   

9.
In this paper, we investigate a discrete variational optimal control for mechanical systems that admit a Birkhoffian representation. Instead of discretizing the original equations of motion, our research is based on a direct discretization of the Pfaff–Birkhoff–d’Alembert principle. The resulting discrete forced Birkhoffian equations then serve as constraints for the minimization of the objective functional. In this way, the optimal control problem is transformed into a finite-dimensional optimization problem, which can be solved by standard methods. This approach yields discrete dynamics, which is more faithful to the continuous equations of motion and consequently yields more accurate solutions to the optimal control problem which is to be approximated. We illustrate the method numerically by optimizing the control for the damped oscillator.  相似文献   

10.
In this paper, we propose for the first time to extend the application field of the high-order mesh-free approach to the stationary incompressible Navier-Stokes equations. This approach is based on a high-order algorithm, which combines a Taylor series expansion, a continuation technique, and a moving least squares (MLS) method. The Taylor series expansion permits to transform the nonlinear problem into a succession of continuous linear ones with the same tangent operator. The MLS method is used to transform the succession of continuous linear problems into discrete ones. The continuation technique allows to compute step-by-step the whole solution of the discrete problems. This mesh-free approach is tested on three examples: a flow around a cylindrical obstacle, a flow in a sudden expansion, and the standard benchmark lid-driven cavity flow. A comparison of the obtained results with those computed by the Newton-Raphson method with MLS, the high-order continuation with finite element method, and those of literature is presented.  相似文献   

11.
The motion and deformation of soft particles are commonly encountered and important in many applications. A discrete element-embedded finite element model (DEFEM) is proposed to solve soft particle motion and deformation, which combines discrete element and finite element methods. The collisional surface of soft particles is covered by several dynamical embedded discrete elements (EDEs) to model the collisional external forces of the particles. The particle deformation, motion, and rotation are independent of each other in the DEFEM. The deformation and internal forces are simulated using the finite element model, whereas the particle rotation and motion calculations are based on the discrete element model. By inheriting the advantages of existing coupling methods, the contact force and contact search between soft particles are improved with the aid of the EDE. Soft particle packing is simulated using the DEFEM for two cases: particle accumulation along a rectangular straight wall and a wall with an inclined angle. The large particle deformation in the lower layers can be simulated using current methods, where the deformed particle shape is either irregular in the marginal region or nearly hexagonal in the tightly packed central region. This method can also be used to simulate the deformation, motion, and heat transfer of non-spherical soft particles.  相似文献   

12.
Three dimensionally coupled computational fluid dynamics (CFD) and discrete element method (DEM) were used to investigate the flow of corn-shaped particles in a cylindrical spouted bed with a conical base. The particle motion was modeled by the DEM, and the gas motion by the k-? two-equation turbulent model. A two-way coupling numerical iterative scheme was used to incorporate the effects of gas–particle interactions in terms of momentum exchange. The corn-shaped particles were constructed by a multi-sphere method. Drag force, contact force, Saffman lift force, Magnus lift force, and gravitational force acting on each individual particle were considered in establishing the mathematical modeling. Calculations were carried out in a cylindrical spouted bed with an inside diameter of 200 mm, a height of 700 mm, and a conical base of 60°. Comparison of simulations with experiments showed the availability of the multi-sphere method in simulating spouting action with corn-shaped particles, but it depended strongly on the number and the arrangement of the spherical elements. Gas–solid flow patterns, pressure drop, particle velocity and particle concentration at various spouting gas velocity were discussed. The results showed that particle velocity reaches a maximum at the axis and then decreases gradually along the radial direction in the whole bed. Particle concentration increases along the radial direction in the spout region but decreases in the fountain region, while it is nearly constant in the annulus region. Increasing spouting gas velocity leads to larger pressure drop, remarkably increased speed of particle moving upward or downward, but decreased particle concentration.  相似文献   

13.
ABSTRACT

A numerical method is developed to simulate the process that a falling rigid sphere hits rigid ground and bounces back in air. The problem is treated as fluid-structure interaction problem based on the ALE finite element flow analysis. In order to introduce the numerical process of impact into the present staggered fluid-structure time marching algorithm, the impact force is applied to the equation of motion of the sphere. The magnitude of the impact force is determined by iteration so that the velocity of the sphere after impact converges to zero. Application of the impact force at a single time instant causes unphysical pressure oscillation. This has been suppressed by applying the impact force smoothly over multiple short time steps. In the present method impulse is evaluated instead of impact force. Computations with different density ratio of the sphere to air showed effect of the air on the sphere motion.  相似文献   

14.
金峤  周晶  景浩 《计算力学学报》2005,22(4):482-488
研究了基于离散变结构控制算法的考虑控制延时影响的相邻建筑结构体系地震反应半主动控制的基本设计和计算方法。首先,建立了相邻结构体系的力学模型及连续运动状态方程,并将其离散化成标准离散状态方程形式。其次,简要地讨论了离散变结构控制器的设计方法,包括切换平面的选择及离散趋近率的构成.最后,应用本文方法对主楼12层,裙房5层的实例结构进行了数值仿真分析,结果表明,该控制方法不仅能有效抑制相邻结构地震反应的鞭梢效应,而且在控制延时存在的情况下,仍能保证系统的减震性能和稳定性。  相似文献   

15.
介绍了基于离散元法的干湿颗粒系统仿真软件DEMSIM。对于干颗粒系统,DEMSIM可以分析二维和三维颗粒系统的弹性和塑性接触碰撞过程;对于湿颗粒系统,DEMSIM采用传统的液桥模型;对于颗粒-流体系统,DEMSIM采用CFD-DEM细观耦合模型模拟。一系列典型算例的模拟分析,验证了干湿颗粒系统仿真软件DEMSIM的精度和有效性。  相似文献   

16.
Elastic interactions in a system of two body-points possessing both translational and rotational degrees of freedom are studied for the most general case of motion in 3D space. The continuum mechanics method is used as a theoretical foundation for describing the interactions. A definition of strain measures for the discrete system is given by analogy with that in continuum mechanics. Constitutive equations for force and moment vectors are derived based on the energy balance equation. Several new interaction potentials are suggested.  相似文献   

17.
对含液颗粒材料流固耦合分析建议了一个基于离散颗粒模型与特征线SPH法的显式拉格朗日-欧拉无网格方案。在已有的用以模拟固体颗粒集合体的离散颗粒模型[1]基础上,将颗粒间间隙内的流体模型化为连续介质,对其提出并推导了基于特征线的SPH法。数值例题显示了所建议方案在模拟颗粒材料与间隙流相互作用的能力和性能以及间隙流体对颗粒结构承载能力及变形的影响。  相似文献   

18.
夏阳  邓英豪  韦世明  金衍 《力学学报》2023,55(3):616-629
在碳达峰的国策背景之下,页岩气成为传统能源向绿色清洁低碳能源转型的重要过渡和能源支点.压后页岩气藏流体流动力学成为高效开发页岩气的关键力学问题.文章将小尺度低导流天然裂缝等效升级为连续介质,建立有机质-无机质-天然裂缝三重连续介质模型,同时对大尺度高导流裂缝采用离散裂缝模型刻画,嵌入天然裂缝连续介质中,构建多重连续/离散裂缝模型.综合考虑吸附气的非平衡非线性解吸附和表面扩散,自由气的黏性流和克努森扩散,给出页岩气在多尺度复杂介质中的非线性耦合流动数学模型.提出多尺度扩展有限单元法对离散裂缝进行显式求解,创新性构建三类加强形函数捕捉离散裂缝的局部流场特征,解决了压后页岩海量裂缝及多尺度流动通道的流动模拟难题.文章提出的模型和方法既能准确刻画高导流裂缝对渗流的影响,又克服了海量多尺度离散裂缝导致计算量增大的问题.通过算例展示了压后页岩各连续介质的压力衰减规律,发现裂缝中自由气、有机质中自由气、无机质中吸附气依次滞后的压力(浓度)扩散现象,重点分析了吸附气表面扩散系数、自由气克努森扩散系数、天然裂缝连续介质渗透率和吸附气解吸附速率对页岩气产量的影响.文章重点解决压后页岩多尺度流动通道的表征和...  相似文献   

19.
A numerical simulation based on discrete element method (DEM) was conducted on the excavation and pushing processes of soil by a bulldozer blade. Soil contains water and the resistance acting on the bulldozer blade is largely influenced by the cohesive force due to liquid bridges formed among soil particles. In the present study, a cohesive bond force model proposed by Utili and Nova [5] was introduced in which the microscopic behavior of cohesive force was modeled analogously with macroscopic shear failure characteristics. The dependency on the magnitude of microscopic cohesive force was verified. The behavior of particles changed greatly by taking into account the cohesive bond force. The characteristic behavior of excavated soil aggregates, such as rolling motion and intermittent collapsing, were observed in front of the blade surface.  相似文献   

20.
A method is developed for simulating the motion and deformation of a tangential discontinuity with stability characteristics similar to the real ones. As distinct from the discrete vortex method, which forms the basis of the method proposed, the motion of a continuous vortex sheet of finite thickness is considered. The equations of motion are derived on the basis of an analysis of the physical reasons for the stability of this sheet with respect to small-scale perturbations. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–50, January–February, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号