首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Pade-type approximation is denned. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Pade-type approximation are explicitly given.  相似文献   

2.
Analysis, evaluation and interpretation of measured signals become important components in engineering research and practice, especially for material characteristic parameters which can not be obtained directly by experimental measurements. The present paper proposes a hybrid-inverse analysis method for the identification of the nonlinear material parameters of any individual component from the mechanical responses of a global composite. The method couples experimental approach, numerical simulation with inverse search method. The experimental approach is used to provide basic data. Then parameter identification and numerical simulation are utilized to identify elasto-plastic material properties by the experimental data obtained and inverse searching algorithm. A numerical example of a stainless steel clad copper sheet is consid- ered to verify and show the applicability of the proposed hybrid-inverse method. In this example, a set of material parameters in an elasto-plastic constitutive model have been identified by using the obtained experimental data.  相似文献   

3.
A new and simple method is developed to establish the pseudo orthogonal properties (POP) of the eigenfunction expansion form (EEF) of crack-tip stress complex potential functions for cracked anisotropic and piezoelectric materials, respectively. Di?erent from previous research, the complex argument separation technique is not required so that cumbersome manipulations are avoided. Moreover, it is shown, di?erent from the previous research too, that the orthogonal …  相似文献   

4.
We see two major trends in Particle Technology. First, the focus is shifted from unit operations towards functional products, i.e. towards product engineering. Second, modeling will become more and more important. Processes cannot yet be designed from basic molecular understanding. Nanotechnology, however, begins to bridge this gap between molecules and particles and may thus open new ways not only for the production and handling of particulate matter but also for the engineered design of advanced material properties. Starting from the concept of product engineering we investigate the basic preconditions for tailoring nanoparticulate properties, i.e. the control of the particle interactions. Nanotechnology can only be transferred to industrial production if the interactions are effectively controlled. Material and particle properties are essential for predictive models. Although strong tools like MD, DEM or population balance models are available, these models are only predictive if realistic material and particle properties are available which is often not the case. We show for selected examples how particle properties can be obtained by studying the physically relevant elementary processes. The impact breakage behavior of many different materials is described by a master curve. Particle adhesion can be modeled if the roughness of particle and substrate and the Hamaker constant are known. The latter is obtained from adsorption studies.  相似文献   

5.
A thermoelastic problem of a circular annulus made of functionally graded materials with an arbitrary gradient is investigated. Different from previous works, our analysis neither requires a special form of the gradient of material properties nor demands partitioning the entire structure into a multilayered homogeneous structure. Instead, we propose a new method for solving the thermoelastic problem of a functionally graded circular annulus by transforming it to a Fredholm integral equation. The distribution of thermal stresses and radial displacement can be obtained by solving the resulting equation. Illustrative examples are given to show the effects of varying gradients on the thermal stresses and radial displacement for given temperature changes at the inner and outer surfaces. The results indicate that the thermal stresses can be relaxed for specified gradients, which is beneficial to design an inhomogeneous annulus to maintain structural integrity.  相似文献   

6.
Binary discrete method of topology optimization   总被引:1,自引:0,他引:1  
The numerical non-stability of a discrete algorithm of topology optimization can result from the inaccurate evaluation of element sensitivities. Especially, when material is added to elements, the estimation of element sensitivities is very inaccurate, even their signs are also estimated wrong. In order to overcome the problem, a new incremental sensitivity analysis formula is constructed based on the perturbation analysis of the elastic equilibrium increment equation, which can provide us a good estimate of the change of the objective function whether material is removed from or added to elements, meanwhile it can also be considered as the conventional sensitivity formula modified by a non-local element stiffness matrix. As a consequence, a binary discrete method of topology optimization is established, in which each element is assigned either a stiffness value of solid material or a small value indicating no material, and the optimization process can remove material from elements or add material to elements so as to make the objective function decrease. And a main advantage of the method is simple and no need of much mathematics, particularly interesting in engineering application.  相似文献   

7.
8.
<正>A three-dimensional(3-D)approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects.The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers,which are allowed to have different material properties from the bulk layer.State equations,including the surface properties of the structure,can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure.Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature,the present 3-D approach is exact,which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach,a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived.An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers.Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.  相似文献   

9.
A mesh-free method based on local Petrov-Galerkin formulation is presented to solve dynamic impact problems of hyperelastic material.In the present method,a simple Heaviside test function is chosen for simplifying domain integrals.Trial function is constructed by using a radial basis function(RBF)coupled with a polynomial basis function,in which the shape function possesses the kronecker delta function property.So,additional treatment is not required for imposing essential boundary conditions.Governing equations of impact problems are established and solved node by node by using an explicit time integration algorithm in a local domain,which is very similar to that of the collocation method except that numerical integration can be implemented over local domain in the present method.Numerical results for several examples show that the present method performs well in dealing with the dynamic impact problem of hyperelastic material.  相似文献   

10.
A theory of elasticity for the bending of orthogonal anisotropic beams has been developed by analogy with the special case, which can be obtained by applying the theory of elasticity for bending of transversely isotropic plates to the problems of two deminsions. In this paper, we present a method to solve the problems of bending of orthogonal anisotropic beams and a new theory of the deep-beam whose ratio of depth to length is larger. It is pointed out that Reissner's theory to account for the effect of transverse shear deformation is not very approximate in the components of stress,  相似文献   

11.
近年来, 超声导波因其衰减小, 传播距离远和信号覆盖范围广, 成为无损检测领域快速发展的方向之一. 然而, 基于超声导波的高温在线检测和激光超声技术却发展缓慢, 其关键在于热弹耦合波动方程求解难度大、传播与衰减特性研究困难. 作为一种有效的求解方法, 勒让德正交多项式方法已广泛应用于导波传播问题, 但该方法在求解热弹导波传播时存在两个不足, 限制其进一步的发展和应用. 这两个缺陷是: (1)求解过程中大量积分的存在, 致使计算效率低下; (2)仅能处理等热边界条件的热弹导波传播. 针对两项不足之处, 提出一种改进的勒让德正交多项式方法, 以求解分数阶热弹板中的导波传播. 推导求解方法中积分的解析表达式, 以提高计算效率; 引入温度梯度展开式, 发展适合勒让德多项式级数的绝热边界条件处理方法. 与已有文献结果对比表明改进方法的正确性; 与已有方法的计算时间对比说明改进方法的高效性. 最后将改进的方法用于求解分数阶热弹板中的导波传播, 研究分数阶次对频散、衰减曲线和应力、位移、温度分布等的影响.   相似文献   

12.
近年来, 超声导波因其衰减小, 传播距离远和信号覆盖范围广, 成为无损检测领域快速发展的方向之一. 然而, 基于超声导波的高温在线检测和激光超声技术却发展缓慢, 其关键在于热弹耦合波动方程求解难度大、传播与衰减特性研究困难. 作为一种有效的求解方法, 勒让德正交多项式方法已广泛应用于导波传播问题, 但该方法在求解热弹导波传播时存在两个不足, 限制其进一步的发展和应用. 这两个缺陷是: (1)求解过程中大量积分的存在, 致使计算效率低下; (2)仅能处理等热边界条件的热弹导波传播. 针对两项不足之处, 提出一种改进的勒让德正交多项式方法, 以求解分数阶热弹板中的导波传播. 推导求解方法中积分的解析表达式, 以提高计算效率; 引入温度梯度展开式, 发展适合勒让德多项式级数的绝热边界条件处理方法. 与已有文献结果对比表明改进方法的正确性; 与已有方法的计算时间对比说明改进方法的高效性. 最后将改进的方法用于求解分数阶热弹板中的导波传播, 研究分数阶次对频散、衰减曲线和应力、位移、温度分布等的影响.  相似文献   

13.
Composites whose some components are smaller in linear size by an order of magnitude than other components are considered. Such components are usually referred to as nanocomponents. Finding all material functions experimentally for components with nanostructure is extremely complicated and sometimes not possible at all. In this paper, an approach to the calculation of material functions from known effective characteristics of the whole composite and of the components with nanostructure is suggested. By way of example, a multilayered composite with isotropic elastic properties is considered.  相似文献   

14.
The present paper develops a numerical technique named FSMS for simulating the crack growth of multilayered composites. Numerical simulations for the crack growth of multilayered ceramic/metal composites are carried out. The effects of some factors such as thickness ratio, initial crack length, material properties and dimensions of the structure on the crack growth are investigated. Numerical results show good agreement with experiments. FSMS is also a simple numerical method to solve crack problems of complex composite structures.  相似文献   

15.
To solve Fredholm integral equations of the second kind, a generalized linear functional is introduced and a new function-valued Padé-type approximation is defined. By means of the power series expansion of the solution, this method can construct an approximate solution to solve the given integral equation. On the basis of the orthogonal polynomials, two useful determinant expressions of the numerator polynomial and the denominator polynomial for Padé-type approximation are explicitly given. Project supported by the National Natural Science Foundation of China (No.10271074)  相似文献   

16.
A numerical procedure is presented for the analysis of the elastic field due to an edge dislocation in a multilayered composite. The multilayered composite consists of n perfectly bonded layers having different material properties and thickness, and two half-planes adhere to the top and bottom layers. The stiffness matrices for each layer and the half-planes are first derived in the Fourier transform domain, then a set of global stiffness equations is assembled to solve for the transformed components of the elastic field. Since the singular part of the elastic field corresponding to the dislocation in the full-plane has been extracted from the transformed components, regular numerical integration is needed only to evaluate the inverse Fourier transform. Numerical results for the elastic field due to an edge dislocation in a bimaterial medium are shown in fairly good agreement with analytical solutions. The elastic field and the Peach–Kohler image force are also presented for an edge dislocation in a single layered half-plane, a two-layered half-plane and a multilayered composite made of alternating layers of two different materials.  相似文献   

17.
A technique for determining the damping properties of a rigid isotropic material from the experimental data on the damping capacity of elongated cantilever-fixed test specimens due to the internal and external aerodynamic damping is proposed. The following two methods for eliminating the aerodynamic damping component are considered: the extrapolation of the data on the damping capacity of a series of test specimens of different widths to the point corresponding to the zero width and the theoretical-experimental approach. The damping properties of the material are determined by the vibration logarithmic decrement depending on the amplitude of the linear deformation. This dependence is represented by a power polynomial. The polynomial coefficients are determined from the minimum condition of the goal function for the positive logarithmic decrement of the material vibrations. These coefficients are sought at the reference point by repeatedly solving the direct problem of determining the damping capacity of the test specimen from the given damping properties of the material. An example is considered to illustrate the identification of the damping properties of steel St.3.  相似文献   

18.
In this work we propose to study the behavior of cellular materials using a second-order multi-scale computational homogenization approach. During the macroscopic loading, micro-buckling of thin components, such as cell walls or cell struts, can occur. Even if the behavior of the materials of which the micro-structure is made remains elliptic, the homogenized behavior can lose its ellipticity. In that case, a localization band is formed and propagates at the macro-scale. When the localization occurs, the assumption of local action in the standard approach, for which the stress state on a material point depends only on the strain state at that point, is no-longer suitable, which motivates the use of the second-order multi-scale computational homogenization scheme. At the macro-scale of this scheme, the discontinuous Galerkin method is chosen to solve the Mindlin strain gradient continuum. At the microscopic scale, the classical finite element resolutions of representative volume elements are considered. Since the meshes generated from cellular materials exhibit voids on the boundaries and are not conforming in general, the periodic boundary conditions are reformulated and are enforced by a polynomial interpolation method. With the presence of instability phenomena at both scales, the arc-length path following technique is adopted to solve both macroscopic and microscopic problems.  相似文献   

19.
Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号