首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
In the paper, a general thin plate theory including surface effects, which can be used for size-dependent static and dynamic analysis of plate-like thin film structures, is proposed. This theory is a modification and generalization of the thin plate model in [Lim, C.W., He, L.H., 2004. Size-dependent nonlinear response of thin elastic films with nanoscale thickness. Int. J. Mech. Sci. 46, 1715–1726]. With the general theory, the governing equations of Kirchoff and Mindlin plate models including surface effects are derived, respectively. Some numerical examples are provided to verify the validities of the theory.  相似文献   

2.
张默涵  李录贤 《力学学报》2022,54(3):697-706
花朵、树叶等自然界的板状结构因发生大变形而具有婀娜多姿的形状,工程实际的板状结构也会出现类似现象.板状结构是指完全相同的面状结构在厚度方向堆砌而形成的厚度尺寸比面内尺寸相比较小的一类特殊三维结构,在生长或外部环境等因素产生的不协调变形激励下,这类结构会形成内部应力,本文研究因之而发生的自发大变形行为.首先,将板状结构的...  相似文献   

3.
A modified continuum model of elastic films with nano-scale thickness is proposed by incorporating surface elasticity into the conventional nonlinear Von Karman plate theory. By using Hamilton’s principle, the governing equations and boundary conditions of the ultra-thin film including surface effects are derived within the Kirchhoff’s assumption, where the effects of non-zero normal stress and large deflection are taken into account simultaneously. The present model is then applied to studying the bending, buckling and free vibration of simply supported micro/nano-scale thin films in-plane strains and explicit exact solutions can be obtained for these three cases. The size-dependent mechanical behavior of the thin film due to surface effects is well elucidated in the obtained solutions.  相似文献   

4.
We develop a formal approach to design shaped microstructures from multilayer films with eigenstrains in the layers. The eigenstrains are inelastic strains that vary from layer to layer resulting in elastic misfit between the layers. Examples include thermal expansion mismatch between the layers, piezoelectric strains, and strains in shape memory alloys. In our approach, the eigenstrains are manipulated by spatially patterning the films to generate structures that, although fabricated by a conventional, planar thin film technology, deform into desired three-dimensional shaped surfaces. The material patterns in the individual layers are determined by topology optimization allowing the creation of arbitrarily complex, geometric layouts. In contrast to existing topology optimization methods for patterning plate structures, the goal of the proposed approach is to generate large deformations via eigenstrains, rather than to increase the stiffness of plate via reinforcement patterns. The optimization methodology is demonstrated by the design of two- and three-layer thin film structures. The performance of the optimized designs is verified by experiments showing the importance of accounting for a nonlinear kinematics in order to obtain the desired shape in the deformed configuration. While our approach is demonstrated in the context of the design of three-dimensional microstructures, it can be easily applied to a variety of problems where it is desired to control the complex shape of plate-like structures by spatial actuation—the spatial actuators are represented by eigenstrains.  相似文献   

5.
The paper addresses the geometrically nonlinear problem of dynamic stability of a viscoelastic plate with concentrated masses. The Bubnov-Galerkin method based on polynomial approximation is used to reduce the problem to a system of nonlinear Volterra-type integro-differential equations with singular relaxation kernels. This system is solved by numerical method based on quadrature formulas. The critical loads are found and their dependence on the arrangement and number of concentrated masses is studied for a wide range of mechanical and geometrical parameters of the plate. The choice of a relaxation kernel for dynamic problems for viscoelastic thin-walled plate-like structures is justified. Results produced by different theories are compared __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 109–118, February 2008.  相似文献   

6.
A generalized refined theory including surface effects is developed for functionally graded ultra-thin films with different surface properties. The classical generalized shear deformable theory is adopted to model the film bulk, while the bulk stresses along the surfaces of the bulk substrate are required to satisfy the surface balance equations of the continuum surface elasticity. As a result, the shape function also shows size-dependence on the film thickness. Since the film is non-homogeneous through the thickness, the state space method and approximate laminate model are employed to derive the variation of shape function through the thickness direction. A simply supported thin film in cylindrical bending is considered as an example to illustrate the application of the present theory. By comparing to the Kirchhoff plate theory including surface effects, the necessity of the present theory for FGM thin films is solidly validated. It is established that the present FGM thin films exhibit significant size-dependence when the thickness approaches to micro-scale. As the gradient index changes, the extent of size-dependence varies accordingly.  相似文献   

7.
桁架材料的连续介质等效模型的研究已有相当基础,而工程中桁架材料往往以类板结构形式出现,其变形表现出明显的弯曲特征。将类板桁架材料采用弯曲板模型模拟,研究合理的方法确定等效板模型的刚度具有重要意义。本文在基于Kirchhoff假定的小挠度薄板弹性理论框架下,研究了类板桁架材料的等效弯曲薄板模型,提出了确定薄板模型等效刚度的基于Dirichlet位移边界条件的代表体元法,给出了确定各刚度系数所对应的代表体元的边界位移形式。具体计算了几种典型形式桁架板的等效刚度,并采用有限元离散模型和实验技术分析了桁架板在一定的边界约束和荷载作用下的响应,并与等效板模型的分析结果进行了对比。结果表明,在响应分析中,具有等效刚度的薄板模型可准确模拟类板桁架材料;连续介质板等效刚度计算的积分法不能给出准确的桁架板等效刚度,而基于Dirichlet位移边界条件的代表体元法获得的等效板的刚度具有很高的精度。  相似文献   

8.
Modeling the stress-strain state of pneumatic tires in the conditions of steady-state and transient rolling is of interest for mechanics of composites and computational mechanics and important from the applied point of view. Mechanical models of various levels of complexity can be used for numerical modeling. In quite a few papers, the corresponding models are derived from the theory of orthotropic shells [1]. However, more thorough and accurate studies of the stress-strain state can be carried out on the basis of three-dimensional models based on the elasticity or viscoelasticity equations. As far as Russian authors are concerned, this approach has first been suggested and implemented in [2]. Another, combined approach uses both the shell theory and the three-dimensional equations of elasticity theory [3, 4]. This approach is reasonable, because the tire structure includes both volumes filled with rubber and thin layers of the rubber cord. The rubber cord layers can be considered as a composite whose structural components possess very different properties. Also, it is quite admissible to consider the rubber cord as a structure periodic in the horizontal projection. Note that the mathematical theory of periodic composites has been developed in [5]. Owing to strong anisotropy and inhomogeneity of the material, large shape distortions of the tire, and, in some cases, its large deformations, viscoelastic properties of rubber play an important role, so that the mechanic model of the tire turns out to be quite complex. The large property differences between various structural components make the matrix of the resulting system of linear equations ill-conditioned, which complicates its numerical solution [6].In this paper, theoretical aspects of a three-dimensional tire model and its numerical implementation are considered.  相似文献   

9.
Plate equations for a plate consisting of one elastic layer and one piezoelectric layer with an applied electric voltage have previously been derived by use of power series expansions of the field variables in the thickness coordinate. These plate equations are here evaluated by the consideration of a time harmonic 2D vibration problem with finite layers. The boundary conditions at the sides of the layers then have to be considered. Numerical comparisons of the displacement field are made with solutions from two other theories; a solution with equivalent boundary conditions for a thin piezoelectric layer applied on an elastic plate and an exact solution based on Fourier series expansions. The two approximate theories are shown to be equally good and they both yield accurate results for low frequencies and thin plates.  相似文献   

10.
In this paper an on-going research effort aimed at detecting and localizing damage in plate-like structures by using mode shape curvature based damage detection algorithm is described. The proposed damage index uses exclusively mode shape curvature data from the damaged structure. This method was originally developed for beam-like structures. In this paper, the method is generalized to plate-like structures which are characterized by two-dimensional mode shape curvature. To calculate mode shape curvatures from the measured mode shapes, three approaches are proposed: the first one is the well-known central difference approximation, the other two are classical approaches based on Tikhonov's regularization technique with smoothing functional. The applicability and effectiveness of the proposed damage detection algorithms are demonstrated experimentally on an aluminium plate containing mill-cut damage. The validity of the method is assessed by comparing the identification results of the experimental test case to the results obtained from the simulated test case. The modal frequencies and the corresponding mode shapes of the aluminium plate are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer (SLV) for the experimental study.  相似文献   

11.
The free vibration of annular thick plates with linearly varying thickness along the radial direction is studied, based on the linear, small strain, three-dimensional (3-D) elasticity theory. Various boundary conditions, symmetrically and asymmetrically linear variations of upper and lower surfaces are considered in the analysis. The well-known Ritz method is used to derive the eigen-value equation. The trigonometric functions in the circumferential direction, the Chebyshev polynomials in the thickness direction, and the Chebyshev polynomials multiplied by the boundary functions in the radial direction are chosen as the trial functions. The present analysis includes full vibration modes, e.g., flexural, thickness-shear, extensive, and torsional. The first eight frequency parameters accurate to at least four significant figures for five vibration categories are obtained. Comparisons of present results for plates having symmetrically linearly varying thickness are made with others based on 2-D classical thin plate theory, 2-D moderate thickness plate theory, and 3-D elasticity theory. The first 35 natural frequencies for plates with asymmetrically linearly varying thickness are compared to the finite element solutions; excellent agreement has been achieved. The asymmetry effect of upper and lower surface variations on the frequency parameters of annular plates is discussed in detail. The first four modes of axisymmetric vibration for completely free circular plates with symmetrically and asymmetrically linearly varying thickness are plotted. The present results for 3-D vibration of annular plates with linearly varying thickness can be taken as benchmark data for validating results from various plate theories and numerical methods.  相似文献   

12.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

13.
The elastic properties of ZnO nanofilms with different film thickness, surface orientations and loading directions are investigated by using molecular mechanics (MM) method. The size dependence of elastic properties is relevant to both the film surface crystallographic orientation and loading direction. Both atomic structure analysis and energy calculation are employed to identify the mechanisms of the size-dependent elastic properties, under different loading directions and surface orientations. Upon small axial deformation, the relationship between intralayer and interlayer bond length variation and film elastic stiffness is established; it is found that the atomic layers with larger bond length variation have higher elastic stiffness. The strain energies of atomic layers of ZnO nanofilm and bulk are decoupled, from which the stiffness of film surface, intralayers, and interlayers are derived and compared with their bulk counterparts. The surface stiffness is found to be much lower than that of the interior layers and bulk counterpart, and with the decrease of film thickness, the residual tension-stiffened interior atomic layers are the main contributions of the increased elastic modulus of ZnO nanofilms.  相似文献   

14.
A semi-analytical approach for the geometrically non-linear analysis of rectangular laminated plates with general inplane and out-of-plane boundary conditions under a general distribution of out-of-plane loads is developed. The analysis is based on the elastic thin plate theory with geometrically non-linear von Kármán strains. The solution of the non-linear partial differential equations is reduced to an iterative sequential solution of non-linear ordinary differential equations using the multi-term extended Kantorovich method. The efficiency, accuracy, and convergence of the proposed method are examined through a comparison with other semi-analytical methods and with finite element analyses. The capabilities of the approach and its applicability to the non-linear large deflection analysis of plate structures are demonstrated through various numerical examples. Emphasis is placed on combinations of lamination, boundary, and loading conditions that cannot be analyzed using alternative semi-analytical methods.  相似文献   

15.
基于水平集方法,提出薄板加强筋分布的拓扑优化理论。采用Kirchhoff板单元,通过刚度等效,分别使用不同的抗弯刚度表征薄板与加强筋,继而通过水平集方法描述加强筋的布局并进行加强筋分布拓扑优化。以最小柔顺度为设计目标,进行了几种典型载荷下加筋板结构的加筋分布优化设计,通过与变密度方法(SIMP)结果以及现有文献设计结果进行对比,验证了本文提出的加强筋分布拓扑优化理论。结果显示,本文方法能够避免灰度单元,获得清晰的加强筋优化布局和尺寸。  相似文献   

16.
论文对于柔性层-薄膜-柔性层三层结构系统,基于经典板理论、一阶剪切变形理论和高阶剪切变形理论,分别推导给出薄膜皱曲的控制方程。对于两个柔性层,则把它们处理成具有有限厚度的平面应变弹性体。针对上下柔性层固支边界或自由边界条件,利用线性扰动动方法得到柔性层对薄膜的横向压力差,最终获得确定薄膜具有周期性正弦型皱曲的临界载荷方程。同时,对结构系统建立了有限元数值模型,通过模拟结果与三种板理论的结果进行了比较,验证了理论解的精确性和适用性。最后,进行了参数和极限情况分析,阐述了上下层边界条件、薄膜和柔性层的材料和几何参数对临界值的影响。  相似文献   

17.
We propose a nonlocal continuum model to describe the size-dependent superelastic responses observed in recent experiments of shape memory alloys. The modeling approach extends a superelasticity formulation based on the martensitic volume fraction, and combines it with gradient plasticity theories. Size effects are incorporated through two internal length scales, an energetic length scale and a dissipative length scale, which correspond to the gradient terms in the free energy and the dissipation, respectively. We also propose a computational framework based on a variational formulation to solve the coupled governing equations resulting from the nonlocal superelastic model. Within this framework, a robust and scalable algorithm is implemented for large scale three-dimensional problems. A numerical study of the grain boundary constraint effect shows that the model is able to capture the size-dependent stress hysteresis and strain hardening during the loading and unloading cycles in polycrystalline SMAs.  相似文献   

18.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

19.
研究了流体负载下的无穷大双周期加强板, 在周期谐振力作用下的振动响应和声辐射,并提出了一种基于有限元和空间波数法的半解析半数值方法. 首先利用有限元的方法对周期结构进行单元离散, 并将结构对薄板的作用力等效为节点力的作用. 然后通过周期结构的振动方程, 结合薄板与结构的位移边界条件, 建立了节点力与薄板节点位移的函数方程. 最后应用空间波数法和傅里叶变换, 并采用数值计算的方法求解出薄板的节点位移, 得到了周期加强板关于离散节点位移的振动和辐射声压方程. 在数值算例中, 对该方法的正确性进行了验证, 并且分析了周期结构对薄板的振动和声辐射的影响.  相似文献   

20.
This paper is devoted to analytical and numerical studies of global buckling of a sandwich circular plate. The mechanical properties of the plate core vary along its thickness, remaining constant in the facings. The middle surface of the plate is its symmetrical plane. The mathematical model of the plate is presented. The field of displacements is formulated using the proposed nonlinear hypothesis that generalizes the classical hypotheses. The equations of equilibrium are formulated based on the principle of stationary total potential energy. The proposed mathematical model of the displacements considers the shear effect. The numerical model of the plate is also formulated with a view to verify the analytical one. Numerical calculations are carried out for the chosen family of plates. The values of the critical load obtained by the analytical and numerical methods are compared. The effects of the material properties of the core and the change of the plate radius on the critical load intensity are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号