首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric impacting loads is investigated in the present paper. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain, which are solved numerically. The dynamic stress and electric displacement factors are obtained as the functions of time and geometry parameters. The present study shows that the presence of the dynamic electric field will impede or enhance the propagation of the crack in piezoelectric ceramics at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the space of the cracks and the crack length.  相似文献   

2.
The dynamic anti-plane problem for a functionally graded piezoelectric strip containing a periodic array of parallel cracks, which are perpendicular to the boundary, is considered. Integral transforms techniques are employed to reduce the problem to the solution of singular integral equations. Numerical results are presented to show the influences of geometry, electromechanical combination factor and material gradient parameter on the fracture behavior.  相似文献   

3.
Summary  A piezoelectric layer bonded to the surface of an elastic structure is considered. The piezoelectric and the elastic layers are infinite along the x-axis and have finite thickness in the y-direction. The polarization direction of the piezoelectric material is along the y-axis. By means of the method of singular integral equations, the solution in a Laplace transform plane is demonstrated. Laplace inversion yields the results in the time domain. Numerical values of the crack tip fields under in-plane transient electromechanical loading are obtained. The influence of layers thickness on stress and electric displacement intensity factors is investigated. Received 16 March 2000; accepted for publication 16 August 2000  相似文献   

4.
This work is concerned with the dynamic response of two coplanar cracks in a piezoelectric ceramic under antiplane mechanical and inplane electric time-dependent load. The cracks are assumed to act either as an insulator or as a conductor. Laplace and Fourier transforms are used to reduce the mixed boundary value problems to Cauchy-type singular integral equations in Laplace transform domain. A numerical Laplace inversion algorithm is used to determine the dynamic stress and electric displacement factors that depend on time and geometry. A normalized equivalent parameter describing the ratio of the equivalent magnitude of electric load to that of mechanical load is introduced in the numerical computation of the dynamic stress intensity factor (DSIF) which has a similar trend as that for the pure elastic material. The results show that the dynamic electric field will impede or enhance crack propagation in a piezoelectric ceramic material at different stages of the dynamic electromechanical load. Moreover, the electromechanical response is greatly affected by the ratio of the crack length to the ligament between the cracks. The stress and electric displacement intensity factor can be combined by the energy density factor or function to address the fracture of piezoelectric materials under the combined influence of electromechanical loading.  相似文献   

5.
An axisymmetric annular electric dislocation is defined. The solution of axisymmetric electric and Volterra climb and glide dislocations in an infinite transversely isotropic piezoelectric domain is obtained by means of Hankel transforms. The distributed dislocation technique is used to construct integral equations for a system of co-axial annular cracks with so-called permeable and impermeable electric boundary conditions on the crack faces where the domain is under axisymmetric electromechanical loading. These equations are solved numerically to obtain dislocation densities on the crack surfaces. The dislocation densities are employed to determine field intensity factors for a system of interacting annular and/or penny-shaped cracks.  相似文献   

6.
Studied is the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a homogeneous piezoelectric material. The properties of the functionally graded piezoelectric strip, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. Integral transform and dislocation density functions are employed to reduce the problem to the solution of a system of singular integral equations. The effects of the periodic crack spacing, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.  相似文献   

7.
The problem of determining the electro-elastic fields around arbitrarily oriented planar cracks in an infinite piezoelectric space is considered. The cracks which are acted upon by a transient load are either electrically impermeable or permeable. A semi-analytic method based on the theory of exponential Fourier transformation is proposed for solving the problem in the Laplace transform domain. The Laplace transforms of the jumps in the displacements and electric potential across opposite crack faces are determined by solving a system of hypersingular integral equations. Once these displacement and electric potential jumps are obtained, the displacements and electric potential and other physical quantities of interest, such as the crack tip stress and electric displacement intensity factors, can be computed with the help of a suitable algorithm for inverting Laplace transforms. The stress and electric displacement intensity factors are computed for some specific cases of the problem.  相似文献   

8.
This study is concerned with the treatment of the dynamic behavior of interacting cracks in a piezoelectric layer bonded to two dissimilar piezoelectric half planes subjected to harmonic anti-plane shear waves. The permeable electric boundary condition is considered. By use of the Fourier transform technique, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in two series of Jacobi polynomials. The electromechanical behavior of two pairs of unequal parallel cracks was determined. Numerical examples are provided to show the effects of the geometry of the cracks, the frequency of the incident waves and materials properties upon the dynamic stress intensity factors (DSIFs) and the electric displacement intensity factors.  相似文献   

9.
In this paper, we discuss waves in piezoelectric periodic composite, with the emphasis on the connection between the electromechanical coupling and the effects of dispersion of Bloch-Floquet waves. A particular attention is given to structures containing interfaces between dissimilar media and localization of the electrical fields near such interfaces.  相似文献   

10.
Plane problem for an infinite space composed of two different piezoelectric or piezoelectric/dielectric semi-infinite spaces with a periodic set of limited electrically permeable interface cracks is considered. Uniformly distributed electromechanical loading is applied at infinity. The frictionless contact zones at the crack tips are taken into account. The problem is reduced to the combined Dirichlet–Riemann boundary value problem by means of the electromechanical factors presentation via sectionally analytic functions, assuming that the electric flux is uniformly distributed inside the cracks. An exact solution of the problem is proposed. It permits to find in a closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux value. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region.Formulae for stresses, electric displacement vector, elastic displacements and electric potential jump at the interface as well as the intensity factors at the crack tips are given. Equation for the contact zone length determination is presented. Calculations for certain material combinations are carried out. The influence of electric permeability of cracks on electromechanical fields and the fracture mechanical parameters is analyzed.  相似文献   

11.
Existing studies on the fracture of cracked piezoelectric materials have been limited mostly to the electrically impermeable and permeable crack models, which represent the limiting cases of the physical boundary condition along the crack surfaces. This paper presents a study on the electromechanical behaviour of interacting dielectric cracks in piezoelectric materials. The cracks are filled with dielectric media and, as the result, the electric boundary condition along the crack surfaces is governed by the opening displacement of the cracks. The formulation of this nonlinear problem is based on simulating the cracks using distributed dislocations and solving the resulting nonlinear singular integral equations. Multiple deformation modes are observed. A solution technique is developed to determine the desired deformation mode of the interacting cracks. Numerical results are given to show the effect of the interaction between parallel cracks. Attention is paid to the transition between permeable and impermeable models with increasing crack opening.  相似文献   

12.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.  相似文献   

13.
The problem of numerical simulation of the steady-state harmonic vibrations of a layered phononic crystal (elastic periodic composite) with a set of strip-like cracks parallel to the layer boundaries is solved, and the accompanying wave phenomena are considered. The transfer matrix method (propagator matrix method) is used to describe the incident wave field. It allows one not only to construct the wave fields but also to calculate the pass bands and band gaps and to find the localization factor. The wave field scattered by multiple defects is represented by means of an integral approach as a superposition of the fields scattered by all cracks. An integral representation in the form of a convolution of the Fourier symbols of Green’s matrices for the corresponding layered structures and a Fourier transform of the crack opening displacement vector is constructed for each of the scattered fields. The crack opening displacements are determined by the boundary integral equation method using the Bubnov-Galerkin scheme, where Chebyshev polynomials of the second kind, which take into account the behavior of the solution near the crack edges, are chosen as the projection and basis systems. The system of linear algebraic equations with a diagonal predominance of components arising when the system of integral equations is discretized has a block structure. The characteristics describing qualitatively and quantitatively the wave processes that take place under the diffraction of plane elastic waves by multiple cracks in a phononic crystal are analyzed. The resonant properties of a system of defects and the influence of the relative positions and sizes of defects in a layered phononic crystal on the resonant properties are studied. To obtain clearer results and to explain them, the energy flux vector is calculated and the energy surfaces and streamlines corresponding to them are constructed.  相似文献   

14.
The dynamic behavior of two parallel symmetry cracks in magneto-electro-elastic composites under harmonic anti-plane shear waves is studied by Schmidt method. By using the Fourier transform, the problem can be solved with a pair of dual integral equations in which the unknown variable is the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surface were expanded in a series of Jacobi polynomials. The relations among the electric filed, the magnetic flux and the stress field were obtained. From the results, it can be obtained that the singular stresses in piezoelectric/piezomagnetic materials carry the same forms as those in a general elastic material for the dynamic anti-plane shear fracture problem. The shielding effect of two parallel cracks was also discussed.  相似文献   

15.
Zhou  Zhen-Gong  Chen  Jun-Ying  Wang  Biao 《Meccanica》2000,35(5):443-456
In this paper, the behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by a new method for the impermeable crack face conditions. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.  相似文献   

16.
The behavior of two collinear anti-plane shear cracks in a piezoelectric layer bonded to two half spaces is investigated by the Schmidt method. The cracks are vertically to the imerfaces of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved using the Schmidt method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of the interacting cracks and the piezoelectric constants of the material upon the stress intensity factor of the cracks.  相似文献   

17.
The three-dimensional problem of a periodic unidirectional composite with a penny-shaped crack traversing one of the fibers is analyzed by the continuum equations of elasticity. The solution of the crack problem is represented by a superposition of weighted unit normal displacement jump solutions, everyone of which forms a Green’s function. The Green’s functions for the unbounded periodic composite are obtained by the combined use of the representative cell method and the higher-order theory. The representative cell method, based on the triple discrete Fourier transform, allows the reduction of the problem of an infinite domain to a problem of a finite one in the transform space. This problem is solved by the higher-order theory according to which the transformed displacement vector is expressed by a second order expansion in terms of local coordinates, in conjunction with the equilibrium equations and the relevant boundary conditions. The actual elastic field is obtained by a numerical evaluation of the inverse transform. The accuracy of the suggested approach is verified by a comparison with the exact analytical solution for a penny-shaped crack embedded in a homogeneous medium. Results for a unidirectional composite with a broken fiber are given for various fiber volume fractions and fiber-to-matrix stiffness ratios. It is shown that for certain parameter combinations the use of the average stress in the fiber, as it is employed in the framework of the shear lag approach, for the prediction of composite’s strength, leads to an over estimation. To this end, the concept of “point stress concentration factor” is introduced to characterize the strength of the composite with a broken fiber. Several generalizations of the proposed approach are offered.  相似文献   

18.
赵翔  李思谊  李映辉 《力学学报》2021,53(11):3035-3044
建立了含裂纹损伤的曲梁压电能量俘获系统在强迫振动下的动力学模型. 基于Prescott型压电曲梁力电耦合振动方程的解析解和裂纹截面处的连续性条件, 求解了含裂纹损伤的压电曲梁的格林函数. 根据线性叠加原理, 对含裂纹的力电耦合模型的系统方程解耦, 得到强迫振动下含裂纹损伤的曲梁压电俘能器的输出电压. 在得到模型的强迫振动解析解后, 提出逆方法检测结构中的裂纹损伤, 这一检测方法适用于处于振动状态下的结构. 在数值计算中, 令裂纹深度为零, 通过对比本文的解析解与现有文献中的解析解, 验证了本文解的有效性. 分别分析了含裂纹损伤的压电曲梁的电压响应与裂纹深度、裂纹位置、材料的几何参数以及阻尼之间的关系. 研究结果表明: 裂纹的存在对曲梁式压电俘能器的影响比直梁式更加复杂; 裂纹出现时, 损伤曲梁在健康曲梁的一阶频率值处一定会出现波动并被激励出二阶频率, 此时的二阶频率是开路中健康压电曲梁的一阶频率值; 通过对电压响应的检测可以确定的损伤裂纹的深度和在结构中出现的位置范围; 利用振动问题的解来检测压电曲梁的健康状况是可行且准确的.   相似文献   

19.
I. INTRODUCTION The composite material and the composite structure are liable to generate damage during manufactureand under load, which will lead to a decrease of the material and structure’s mechanical properties.It is accepted that there exist four…  相似文献   

20.
Summary  Transient stresses around two parallel cracks in an infinite elastic medium are investigated in the present paper. The shape of the cracks is assumed to be square. Incoming shock stress waves impinge upon the two cracks normal to tzheir surfaces. The mixed boundary value equations with respect to stresses and displacements are reduced to two sets of dual integral equations in the Laplace transform domain using the Fourier transform technique. These equations are solved by expanding the differences in the crack surface displacements in a double series of a function that is equal to zero outside the cracks. Unknown coefficients in the series are calculated using the Schmidt method. Stress intensity factors defined in the Laplace transform domain are inverted numerically to the physical space. Numerical calculations are carried out for transient dynamic stress intensity factors under the assumption that the shape of the upper crack is identical to that of the lower crack. Received 2 February 2000; accepted for publication 10 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号