首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stress field in a periodically layered composite with an embedded crack oriented in the normal direction to the layering and subjected to a tensile far-field loading is obtained based on the continuum equations of elasticity. This geometry models the 2D problem of fiber reinforced materials with a transverse crack. The analysis is based on the combination of the representative cell method and the higher-order theory. The representative cell method is employed for the construction of Green’s functions for the displacements jumps along the crack line. The problem of the infinite domain is reduced, in conjunction with the discrete Fourier transform, to a finite domain (representative cell) on which the Born–von Karman type boundary conditions are applied. In the framework of the higher-order theory, the transformed elastic field is determined by a second-order expansion of the displacement vector in terms of local coordinates, in conjunction with the equilibrium equations and these boundary conditions. The accuracy of the proposed approach is verified by a comparison with the analytical solution for a crack embedded in a homogeneous plane.Results show the effects of crack lengths, fiber volume fractions, ratios of fiber to matrix Young’s moduli and matrix Poisson’s ratio on the resulting elastic field at various locations of interest. Comparisons with the predictions obtained from the shear lag theory are presented.  相似文献   

2.
An analytical model is presented for a unidirectional composite with a matrix crack straddling across rubber-coated fiber reinforcements. An expression is derived for the energy released in matrix cracking. A penny-shaped matrix crack configuration is chosen as an example. With the aid of Hankel's transform, a linear integral equation is derived and solved numerically for the reinforcement stress and energy release in terms of a parameter λ that depends on the composite material and crack geometry. The maximum stress intensity factor for a matrix crack in the unidirectional composite increases monotonically with λ, attaining the largest value for a crack in a homogeneous matrix material.  相似文献   

3.
The transient response of a magneto-electro-elastic material with a penny-shaped dielectric crack subjected to in-plane magneto-electro-mechanical impacts is made. To simulate an opening crack with a dielectric interior, the crack-face electromagnetic boundary conditions are supposed to depend on the crack opening displacement and the jumps of electric and magnetic potentials across the crack. Four ideal crack-face electromagnetic boundary conditions involving a combination of electrically permeable or impermeable and magnetically permeable or impermeable assumptions can be reduced. The Laplace and Hankel transform techniques are further utilized to solve the mixed initial-boundary-value problem. Three coupling Fredholm integral equations are obtained and solved by the composite Simpson's rule. Dynamic field intensity factors of stress, electric displacement, magnetic induction, crack opening displacement (COD), electric potential and magnetic potential are given in the Laplace transform domain. By means of a numerical inversion of the Laplace transform, numerical results are calculated to show the variations of the physical parameters of concern versus the normalized time in graphics. The effects of applied electric and magnetic loads on the dynamic intensity factors of stress and COD, and the dynamic energy release rate for a BaTiO3-CoFe2O4 composite with a penny-shaped vacuum crack are discussed in detail.  相似文献   

4.
Three types of analyses are combined to investigate the effect of missing fibers in periodic continuous fiber composites that are subjected to thermomechanical loadings. The representative cell method is employed in the first analysis for the construction of Green’s functions elastic fields for the fiber–matrix interfacial jumps problem. As a result, the infinite domain problem is reduced, in conjunction with the discrete Fourier transform, to a finite domain problem on which Born–von Karman type boundary conditions are applied. In the second analysis, the transformed elastic field is determined by a second-order expansion of the displacement vector in terms of local coordinates, and by imposing the equilibrium equations, the interfacial traction and displacement conditions, and the Born–von Karman type boundary conditions. The actual non-periodic elastic field at any point is obtained from the Fourier-transformed fields by a numerical inversion. In the third one, a micromechanical analysis for periodic continuous fiber composites in which all fibers are perfectly bonded to the surrounding matrix provides the elastic field within the phases. A superposition of the thermoelastic fields obtained from the first and third analysis provides the traction-free boundary conditions at the interface of the missing fibers. The accuracy of the offered approach is verified by comparison with analytical solutions that exist in some special cases. Results show the effect of a missing fiber in boron/epoxy and glass/epoxy composites that are subjected to various types of thermomechanical loadings.  相似文献   

5.
The problem of a penny-shaped interface crack between a functionally graded piezoelectric layer and a homogeneous piezoelectric layer is investigated. The surfaces of the composite structure are subjected to both mechanical and electrical loads. The crack surfaces are assumed to be electrically impermeable. Integral transform method is employed to reduce the problem to a Fredholm integral equation of the second kind. The stress intensity factor, electric displacement intensity factor and energy release rate are derived, some typical numerical results are plotted graphically. The effects of electrical loads, material nonhomogeneity and crack configuration on the fracture behaviors of the cracked composite structure are analyzed in detail.  相似文献   

6.
Based on the assumption that the elastic strain of electrostrictive materials is a higher-order small quantity, this paper studies the 3D problem of an infinite electrostrictive solid with a flat elliptical crack which is electrically permeable. According to existing solutions of similar problems in pure elastic materials, with the displacement function method, we first derived explicit expression for displacement potential function and obtained stress field near the crack and open displacement of crack surface. Then, the general solution for the stress intensity factor was derived, and the corresponding solutions were also presented for a penny-shaped crack and a permeable line-crack as two special cases of the present problem. Finally, numerical results were given to discuss the effect of environment at infinity and electric field inside the crack on the stress-intensity factors.  相似文献   

7.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic elastic plane is studied. An asymmetrical dynamic model for bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is determined by maximum tensile stress, resulting in fiber rupture and hence the crack propagation would occur in a self-similarity manner. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two moving loads given is obtained, respectively. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be obtained.  相似文献   

8.
An elastic analysis of an internal crack with bridging fibers parallel to the free surface in an infinite orthotropic anisotropic elastic plane is studied, and asymmetrical dynamic fracture model of bridging fiber pull-out of unidirectional composite materials is presented for analyzing the distributions of stress and displacement with the internal asymmetrical crack under the loading conditions of an applied non-homogenous stress and the traction forces on crack faces yielded by the bridging fiber pull-out model. Thus the fiber failure is ascertained by maximum tensile stress, the fiber ruptures and hence the crack propagation should also appear in the modality of self-similarity. The formulation involves the development of a Riemann-Hilbert problem. Analytical solution of an asymmetrical propagation crack of unidirectional composite materials under the conditions of two increasing loads given is obtained, respectively. In terms of correlative material properties, the variable rule of dynamic stress intensity factor was depicted very well. After those analytical solutions were utilized by superposition theorem, the solutions of arbitrary complex problems could be gained.  相似文献   

9.
An analytical approach to calculate the stress of an arbitrary located penny-shaped crack interacting with inclusions and voids is presented. First, the interaction between a penny-shaped crack and two spherical inclusions is analyzed by considering the three-dimensional problem of an infinite solid, composed of an elastic matrix, a penny-shaped crack and two spherical inclusions, under tension. Based on Eshelby’s equivalent inclusion method, superposition theory of elasticity and an approximation according to the Saint–Venant principle, the interaction between the crack and the inclusions is systematically analyzed. The stress intensity factor for the crack is evaluated to investigate the effect of the existence of inclusions and the crack–inclusions interaction on the crack propagation. To validate the current framework, the present predictions are compared with a noninteracting solution, an interacting solution for one spherical inclusion, and other theoretical approximations. Finally, the proposed analytical approach is extended to study the interaction of a crack with two voids and the interaction of a crack with an inclusion and a void.  相似文献   

10.
横观各向同性三维热弹性力学通解及其势理论法   总被引:3,自引:0,他引:3  
陈伟球  丁皓江 《力学学报》2003,35(5):578-583
通过引入两个位移函数,对用位移表达的运动平衡方程作了简化.利用算子理论,严格地导出了横观各向同性非耦合热弹性动力学问题的通解.对于静力学问题,通解的形式可进一步简化成用4个准调和函数来表示.具体考察了横观各向同性体内平面裂纹上下表面有对称分布温度作用的问题,推广了势理论方法,导出了一个积分方程和一个微分-积分方程.针对币状裂纹表面受均布温度作用情形,给出了具体的解。  相似文献   

11.
The problem of numerical simulation of the steady-state harmonic vibrations of a layered phononic crystal (elastic periodic composite) with a set of strip-like cracks parallel to the layer boundaries is solved, and the accompanying wave phenomena are considered. The transfer matrix method (propagator matrix method) is used to describe the incident wave field. It allows one not only to construct the wave fields but also to calculate the pass bands and band gaps and to find the localization factor. The wave field scattered by multiple defects is represented by means of an integral approach as a superposition of the fields scattered by all cracks. An integral representation in the form of a convolution of the Fourier symbols of Green’s matrices for the corresponding layered structures and a Fourier transform of the crack opening displacement vector is constructed for each of the scattered fields. The crack opening displacements are determined by the boundary integral equation method using the Bubnov-Galerkin scheme, where Chebyshev polynomials of the second kind, which take into account the behavior of the solution near the crack edges, are chosen as the projection and basis systems. The system of linear algebraic equations with a diagonal predominance of components arising when the system of integral equations is discretized has a block structure. The characteristics describing qualitatively and quantitatively the wave processes that take place under the diffraction of plane elastic waves by multiple cracks in a phononic crystal are analyzed. The resonant properties of a system of defects and the influence of the relative positions and sizes of defects in a layered phononic crystal on the resonant properties are studied. To obtain clearer results and to explain them, the energy flux vector is calculated and the energy surfaces and streamlines corresponding to them are constructed.  相似文献   

12.
This paper is concerned with the elastic wave scattering induced by a penny-shaped interface crack in coated materials. Using the integral transform, the problem of wave scattering is reduced to a set of singular integral equations in matrix form. The singular integral equations are solved by the asymptotic analysis and contour integral technique, and the expressions for the stress and displacement as well as the dynamic stress intensity factors (SIFs) are obtained. Using numerical analysis, this approach is verified by the finite element method (FEM), and the numerical results agree well with the theoretical results. For various crack sizes and material combinations, the relations between the SIFs and the incident frequency are analyzed, and the amplitudes of the crack opening displacements (CODs) are plotted versus incident wavenumber. The investigation provides a theoretical basis for the dynamic failure analysis and nondestructive evaluation of coated materials.  相似文献   

13.
This paper analyzes the dynamic magnetoelectroelastic behavior induced by a penny-shaped crack in a magnetoelectroelastic layer subjected to prescribed stress or prescribed displacement at the layer surfaces. Two kinds of crack surface conditions, i.e., magnetoelectrically impermeable and permeable cracks, are adopted. The Laplace and Hankel transform techniques are employed to reduce the problem to Fredholm integral equations. Field intensity factors are obtained and discussed. Numerical results of the crack opening displacement (COD) intensity factors are presented and the effects of magnetoelectromechanical loadings, crack surface conditions and crack configuration on crack propagation and growth are examined. The results indicate that among others, the fracture behaviors of magnetoelectroelastic materials are affected by the sizes and directions of the prescribed magnetic and/or electric fields, and the effects are strongly dependent on the elastic boundary conditions.  相似文献   

14.
横观各向同性材料的三维断裂力学问题   总被引:4,自引:0,他引:4  
陈梦成  张安哥 《力学学报》2006,38(5):612-617
从三维横观各向同性材料弹性力学理论出发, 使用Hadamard有限部积分概念, 导出了三维状态下单位位移间断(位错)集度的基 本解. 在此基础上, 进一步运用极限理论, 将任意载荷作用下, 三维无限大横观各向 同性材料弹性体中, 含有一个位于弹性对称面内的任意形状的片状裂纹问题, 归结为求 解一组超奇异积分方程的问题. 通过二维超奇异积分的主部分析方法, 精确地求得了裂纹前沿光滑点附近的应力奇异指数和奇异应力场, 从而找到了以裂纹表面位移间断表示的应力强度因子表达式及裂纹局部扩展所提供 的能量释放率. 作为以上理论的实际应用,最后给出了一个圆形片状裂纹问题 的精确解例和一个正方形片状裂纹问题的数值解例. 对受轴对称法向均布载荷作用下圆形片状裂纹问题, 讨论了超奇异积分方程的精确求解方法, 并获得了位移间断和应力强度因子的封闭解, 此结果与现有理论解完全一致.  相似文献   

15.
The plane static elastic problem of stress concentration in a unidirectional discrete infinite composite weakened by fiber breaks on a line normal to the reinforcement direction (an analog of the Griffith problem of elasticity theory) is considered. The composite is subjected to uniform stresses at infinity, and the crack edges are loaded symmetrically by the normal pressure. The problem reduces to constructing a polynomial with known values at the points of fiber breaks. The stress distribution along the line of breaks is obtained in the form of a fractional rational function of fiber number.  相似文献   

16.
This paper examines the axisymmetric problem pertaining to a penny-shaped crack which is located at the bonded plane of two similar elastic halfspace regions which exhibit localized axial variations in the linear elastic shear modulus, which has the form G(z)=G1+G2e±ζz. The equations of elasticity governing this type of non-homogeneity are solved by employing a Hankel transform technique. The resulting mixed boundary value problem associated with the penny-shaped crack is reduced to a Fredholm integral equation of the second kind which is solved in a numerical fashion to generate the crack opening mode stress intensity factor at the tip.  相似文献   

17.
The paper studies the stress rupture behavior of a reinforced viscoelastic composite through which a penny-shaped mode I crack propagates under a constant load. The composite has hexagonal symmetry and consists of elastic isotropic fibers and viscoelastic isotropic matrix. The material is modeled as a transversely isotropic homogeneous viscoelastic medium with effective characteristics. The crack is in the isotropy plane. The ring-shaped fracture process zone at the crack front is modeled by a modified Dugdale zone with time-dependent stresses. The viscoelastic properties of the matrix are characterized using a resolvent integral operator. Use is made of Volterra's principle, the method of operator continued fractions, and the theory of precritical crack growth in viscoelastic bodies. The problem is reduced to nonlinear integral equations. Numerical results are obtained for certain components of the composite, constant volume fractions, and different fracture strengths Translated from Prikladnaya Mekhanika, Vol. 44, No. 8, pp. 45–51, August 2008.  相似文献   

18.
Buckling problem of the elastic and viscoelastic rotationally symmetric thick circular plate with a penny-shaped crack is investigated. It is supposed that the crack edges have a small initial rotationally symmetric imperfection. The lateral boundary of the plate is clamped and the clamp compresses this plate circumferentially and inwards by a fixed radial displacement. The investigations are carried out in the framework of the exact geometrically non-linear equations of the theory of viscoelasticity and as a buckling criterion the case for which the initial imperfection of the crack edges start to increase indefinitely is taken. Numerical results are obtained using the Laplace transform and finite element method and are compared with the known ones for elastic composites.  相似文献   

19.
Summary A solution is derived from equations of equilibrium in an infinite isotropic elastic solid containing a penny-shaped crack where displacements are given. Abel transforms of the second kind stress and displacement components at an arbitrary point of the solid are known in the literature in terms of jumps of stress and displacement components at a crack plane. Limiting values of these expressions at the crack plane together with the boundary conditions lead to Abel-type integral equations, which admit a closed form solution. Explicit expressions for stress and displacement components on the crack plane are obtained in terms of prescribed face displacements of crack surfaces. Some special cases of the crack surface shape functions have been given in the paper.  相似文献   

20.
A fundamental solution for an infinite elastic medium containing a penny-shaped crack subjected to dynamic torsional surface tractions is attempted. A double Laplace–Hankel integral transform with respect to time and space is applied both to motion equation and boundary conditions yielding dual integral equations. The solution of the derived dual integral equations is based on an analytic procedure using theorems of Bessel functions and ordinary differential equations. The dynamic displacements’ field is obtained by inversion of the corresponding Laplace–Hankel transformed variable. Results of a representative example for a crack subjected to pulse surface tractions are obtained and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号