首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The paper presents a model of the UIC link suspension for freight wagons with emphasis on its longitudinal and lateral characteristics, which influence the lateral dynamics of the vehicle. The functioning of the suspension in the horizontal plane is realised by a number of technical (pivoted) pendulums composing linkages. The main feature of the joints of linkages is internal rolling/sliding in the presence of dry friction. The dissipation of energy by dry friction in the joints is the only source of damping, which influences the lateral dynamics of the vehicle. After detailed modelling of the technical pendulum, phenomenological models of the suspension are built, which reproduce the characteristics of the suspension using simple elements. A three-parameter model with one dry-friction slider and two linear springs reproduces the lateral characteristic of the suspension. A nine-parameter model with four dry-friction sliders and five springs reproduces the longitudinal characteristic. The models, using a method of non-smooth mechanics, may be directly implemented to vehicle/track dynamic simulations.Professor Hans True of TU Denmark for stressing the importance of the problem of the UIC suspension modelling for successful upgrading of freight wagons.  相似文献   

2.
3.
阻尼匹配是制约车辆悬架系统减振器设计的关键问题.以某轻型卡车为研究对象,利用MATLAB软件建立了悬架阻尼优化设计的半车模型.采用车体垂向加速度、俯仰角加速度和车轮动载均方根值作为评价指标,利用线性加权和法建立了悬架阻尼优化设计的目标函数.在随机路面激励下,对悬架系统阻尼进行了优化匹配和分析,并通过实车实验验证了优化效果.研究结果表明,悬架阻尼的匹配优化可有效提高车辆的行驶平顺性,从而为车辆悬架的动态设计提供有益参考.  相似文献   

4.
In this paper, a nonlinear dynamic model of a quarter vehicle with nonlinear spring and damping is established. The dynamic characteristics of the vehicle system with external periodic excitation are theoretically investigated by the incremental harmonic balance method and Newmark method, and the accuracy of the incremental harmonic balance method is verified by comparing with the result of Newmark method. The influences of the damping coefficient, excitation amplitude and excitation frequency on the dynamic responses are analyzed. The results show that the vibration behaviors of the vehicle system can be control by adjusting appropriately system parameters with the damping coefficient, excitation amplitude and excitation frequency. The multi-valued properties, spur-harmonic response and hardening type nonlinear behavior are revealed in the presented amplitude-frequency curves. With the changing parameters, the transformation of chaotic motion, quasi-periodic motion and periodic motion is also observed. The conclusions can provide some available evidences for the design and improvement of the vehicle system.  相似文献   

5.
As it is known, track transportation can be divided into track system above and track system below. While the train is moving, the parts above and below are interacted and influenced. Therefore, in fact, the problem of track transportation is the match between the vehicle and the railway line system. In this paper, on a basis of dynamic analysis of the vehicle-subgrade model of vertical coupled system under primary suspension, utilizing track maintenance standard and simulating track irregularity excitation, the dynamic interaction of vehicle-track-subgrade system is researched in theory and dynamic model of the vertical vehicle-track-subgrade coupled system under secondary suspension is established by compatibility condition of deformation. Even this model considers the actual structure of a vehicle, also considers vibration characteristic of the substructure of track including subgrade and foundation. All these work want to be benefit for understanding and design about the dynamic characters of subgrade in high speed railway.  相似文献   

6.
Tracked vehicles are exposed to severe ride environment due to dynamic terrain-vehicle interactions. Hence it is essential to understand the vibration levels transmitted to the vehicle, as it negotiates different types of terrains at different speeds. The present study is focused on the development of single station representation of tracked vehicles with trailing arm hydro-gas suspension systems, simulating the ride dynamics. The kinematics of hydro-gas suspension system have been derived in order to determine the non-linear stiffness characteristics at various charging pressures. Then, incorporating the actual suspension kinematics, non-linear governing equations of motion have been derived for the sprung and unsprung masses and solved by coding in Matlab. Effect of suspension non-linear dynamics on the single station ride vibrations have been analyzed and validated with a multi-body dynamics model developed using MSC.ADAMS. The above mathematical models would help in estimating the ride vibration levels of the tracked vehicle, negotiating different types of terrains at various speeds and also enable the designers to fine-tune the suspension characteristics such that the ride vibrations are within acceptable limits. The mathematical ride model would also assist in development of non-linear ride vibration model of full tracked vehicle and estimate the sprung mass dynamics.  相似文献   

7.
The mechanism of vehicle shimmy has been paid much attention in the past decades. In which, the clearance of the steering linkage is usually neglected. Yet the prior research of the authors proved that the clearance can make great effects on the dynamic performance of the linkage. Therefore, based on nonlinear dynamics, a six-DOF dynamic model of vehicle shimmy system with consideration of the clearance was established. In which, the nonlinearity due to clearance of the movement pair in steering mechanism was taken into account. Numerical examples showed that the clearance of the movement pair could make great effects on the dynamic behavior of the vehicle shimmy system, and it is one of the key factors leading to chaos motion of the shimmy system, which provided theoretical basis for vehicle shimmy control.  相似文献   

8.
This paper proposes a systematic method, inte-grating the uniform design(UD)of experiments and quantum-behaved particle swarm optimization(QPSO),to solve the problem of a robust design for a railway vehicle suspension system. Based on the new nonlinear creep model derived from combining Hertz contact theory, Kalker's linear the-ory and a heuristic nonlinear creep model,the modeling and dynamic analysis of a 24 degree-of-freedom railway vehi-cle system were investigated.The Lyapunov indirect method was used to examine the effects of suspension parameters, wheel conicities and wheel rolling radii on critical hunting speeds.Generally,the critical hunting speeds of a vehicle sys-tem resulting from worn wheels with different wheel rolling radii are lower than those of a vehicle system having origi-nal wheels without different wheel rolling radii.Because of worn wheels, the critical hunting speed of a running rail-way vehicle substantially declines over the long term. For safety reasons,it is necessary to design the suspension sys-tem parameters to increase the robustness of the system and decrease the sensitive of wheel noises.By applying UD and QPSO,the nominal-the-best signal-to-noise ratio of the sys-tem was increased from?48.17 to?34.05 dB.The rate of improvement was 29.31%.This study has demonstrated that the integration of UD and QPSO can successfully reveal the optimal solution of suspension parameters for solving the robust design problem of a railway vehicle suspension sys-tem.  相似文献   

9.
考虑间隙反馈控制时滞的磁浮车辆稳定性研究   总被引:1,自引:0,他引:1  
吴晗  曾晓辉  史禾慕 《力学学报》2019,51(2):550-557
常导磁吸型(EMS)磁悬浮列车在悬浮控制中的每个环节,时滞是不可避免的,当时滞超过一定程度后,系统有可能失稳.本文针对EMS磁浮列车控制环节的临界时滞与车辆参数(如运行速度、反馈控制增益、导轨参数和悬挂参数)的关系开展研究.建立了磁浮车辆/导轨耦合动力学模型,车辆包含1节车辆和4个磁浮架,考虑车辆的10个自由度,每个磁浮架上包含4个悬浮电磁铁.导轨模拟为一系列简支Bernoulli-Euler梁,采用模态叠加法对导轨振动方程进行求解.采用传统线性电磁力模型实现车辆和轨道的耦合.采用比例-微分控制算法对电磁铁电流进行反馈控制,实现车辆稳定悬浮,并假设时滞均发生在控制环节,且只考虑间隙反馈控制环节的时滞.采用四阶龙格库塔法对耦合系统动力学方程进行求解,编写了数值仿真程序,计算得到车辆导轨耦合系统在考虑间隙反馈控制时滞时的响应.将系统运动发散时的时滞大小视为临界时滞,开展了参数规律影响分析.通过分析,给出了提高时滞条件下车辆稳定性的方法,包括增大导轨的弯曲刚度和阻尼比,减小间隙反馈控制增益并增大速度反馈控制增益,以及增大二系悬挂阻尼.   相似文献   

10.
Tracked vehicles fitted with torsion bar suspensions are limited in their ability to achieve high mobility. This limitation is due to the linear characteristics and the consequent poorer ride performance. Hydro-gas suspensions due to their inherent non-linear behavior can provide higher mobility and better ride comfort performance. The hydro-gas suspension model has usually been developed from experimental force-displacement characteristics, which requires availability of suspension hardware.In this paper, a hydro-gas suspension system is modeled using polytropic gas compression model to represent the spring characteristics, while the damper orifices are modeled using hydraulic conductance. The analytical model is then validated with experiments individually for spring and damper flow characteristics and then as a suspension-wheel assembly in a test rig. The validated suspension model is incorporated in an in-plane model. Using this model, simulation is carried out for sinusoidal inputs of different wavelengths, amplitudes and vehicle speeds. The simulation model is validated with data measured on a vehicle traversing an APG course. The proposed model agrees very well with the measured data. Based on the validated model, studies on the influence of suspension parameters on the ride comfort of a tracked vehicle are carried out.  相似文献   

11.
The objective of research in this paper refers to the theoretical and experimental determination of dynamic sizes that occur during the process of impact of railway wagons. At the process of wagons impact as well as at the time of changes of movement regime (starting, stopping, and braking), the longitudinal forces that significantly affect the stress-deformational state of the supporting wagon structure occur. In the process of developing and designing new types of wagons and in the process of identifying the behavior of existing types of wagons, it is necessary to know the values of the most important dynamic sizes that occur during the process of impact. In this paper, a method for determining these sizes is formed by using the theoretical models of impact of wagons. Results of numerical simulation of impact are compared with the results of experimental tests, which were conducted according to international regulations. Research has shown that the results of numerical simulations coincide with the results of experimental tests, with certain exceptions. It is concluded that theoretical model can be used in determining the most important dynamic sizes that occur during the process of wagons impact.  相似文献   

12.
为了快速计算履带车辆在路面不平度激励下的动力学响应,基于合理假设采用理论力学方法建立了某履带车辆的简化动力学模型,用ADAMS 软件建立了同种工况下的履带车辆动力学模型,并把两种模型的求解结果进行了对比,验证了简化模型的合理性. 研究结果为基于简化模型的动力学方程对车辆悬挂系统进行优化和逆动力学分析奠定了基础.  相似文献   

13.
The design of an automotive powerplant mounting system is an essential part in vehicle safety and improving the vehicle noise, vibration and harshness (NVH) characteristics. One of the main problems encountered in the automotive design is isolating low frequency vibrations of the powerplant from the rest of the vehicle. The significant powerplant mass makes the choice of frequency and mode arrangements a critical design decision. Several powerplant mounting schemes have been developed to improve NVH properties concentrating on the positioning and design of resilient supports. However these methods are based on decoupling rigid body modes from a grounded powerplant model which ignores chassis and suspension system interactions. But it cannot be stated that decoupling the grounded rigid body modes of the powerplant will systematically reduce chassis vibrations. In this paper, a new analytical method is proposed to examine the mechanisms of coupling between the powerplant and the vehicle chassis and subsystems. The analytical procedure expands the equation of motion of the vehicle components to such that a domain of boundary conditions used in the 6 degrees-of-freedom powerplant mounting model can be defined. An example of this new procedure is given for improving NVH chassis response at idle speed using the torque roll axis decoupling strategy.  相似文献   

14.
A non-linear, in-plane computer simulation model of a typical high-mobility tracked vehicle is developed for suspension dynamic analysis and ride quality assessment. The Langrangian model formulation of the tracked vehicle is derived considering an arbitrary rigid terrain profile and constant vehicle speed. The model incorporates detailed representations of a trailing arm suspension system and dynamic wheel-track-terrain interactions. The computer model predictions are validated against field measurements, which were gathered from tests of an armoured personnel carrier traversing a discrete half-round bump and a random course. A parametric sensitivity analysis was carried out using the validated computer model in order to assess the influence of conventional suspension parameters on the ride performance of the test vehicle. In addition, the ride performance potentials of an alternate hydrogas suspension configuration were investigated.  相似文献   

15.
汽车多自由度悬架的非线性振动特性   总被引:6,自引:0,他引:6  
以研究主、副簧组成的悬架系统出发,建立了分段线性非线性悬架系统的动力学模型,运用KB方法求出了此类系统运动的解析解。其幅频响应曲线表明,当缓冲簧间隙适当时,系统非线性特征十分明显,相当于一种缓冲器的趋硬弹簧的作用。同时讨论了非线性弹簧刚度、阻尼系数、地面不平度对共振曲线的影响,分析了轮胎的等效刚度、阻尼系数和质量对系统振动的影响,得到了此类主、副簧组成的悬架结构的运动形式及特征。由理论分析和数值计算画出的幅频特性曲线基本吻合,可为汽车悬架系统的分段线性非线性振动的参数识别、稳定区域的分析研究和优化设计提供理论依据。  相似文献   

16.
Methods that account for the flexibility of multibody systems extend the range of applications to areas such as flexible robots, precision machinery, vehicle dynamics or space satellites. The method proposed here for flexible multibody models allows for the representation of complex-shaped bodies using general finite-element discretizations which deform during the dynamic loading of the system, while the gross rigid body motion of these bodies is still captured using fixed-body coordinate frames. Components of the system for which the deformations are relatively unimportant are represented with rigid bodies. This method is applied to a road vehicle where flexibility plays an important role in its ride and handling dynamic behavior. Therefore, for the study of the limit behavior of the vehicles, the use of flexible multibody models is of high importance. The design process of these vehicles, very often based on intuition and experience, can be greatly enhanced through the use of generalized optimization techniques concurrently with multibody codes. The use of sparse matrix system solvers and modal superposition, to reduce the number of flexible coordinates, in a computer simulation, assures a fast and reliable analysis tool for the optimization process. The optimum design of the vehicle is achieved through the use of an optimization algorithm with finite-differencesensitivities, where the characteristics of the vehicle components are the design variables on which appropriate constraints are imposed. The ride optimization is achieved by finding the optimum of a ride index that results from a metric that accounts for the acceleration in several key points in the vehicle properly weighted in face of their importance for the comfort of the occupant. Simulations with different road profiles are performed for different speeds to account for diverse ride situations. The results are presented and discussed in view of the different methods usedwith emphasis on models and algorithms.  相似文献   

17.
18.
设计了一种采用囊式空气弹簧的交叉型双气室空气互联悬架 (PIS 悬架),并应用于侧翻事故发生率极高的全地形车上. 建立了交叉型双气室气体耦合 AMEsim 模型与全地形车整车动力学 ADAMS/Car 模型,通过将前者模型中的空气弹簧弹性力作为整车动力学模型的输入变量,将后者模型中的空气弹簧压缩伸张位移作为气体耦合模型的输入变量,建立了完整的机械-气体耦合多自由度动力学联合仿真模型. 通过 J 型弯高速典型仿真实验对搭载 PIS 悬架、双气室非互联悬架 (UN-PIS 悬架) 和普通螺旋弹簧悬架 (HS 悬架) 的全地形车进行侧倾特性对比研究. 研究结果显示,PIS 悬架若关闭互联管路,则会形成 UN-PIS 非互联状态,使悬架刚度瞬间大幅上升,平顺性瞬间变差,而具有相同垂向刚度的 PIS 悬架与 HS 悬架,前者能够提供更多的侧倾角刚度. 研究了气路系统 中影响动态侧倾特性的相关因子,包括连接管路管长、管径、附加气室容积. 研究表明,互联管路管长越小,越有利于提升全地形车侧倾特性,存在临界管径,管径小于或大于该值时,均会小幅度提升侧倾特性,附加气室容积越小,侧倾角刚度越大,为 PIS 悬架气路系统设计提供理论依据.  相似文献   

19.
王震  祝恒佳  陈晓宇  张云清 《力学学报》2020,52(4):996-1006
设计了一种采用囊式空气弹簧的交叉型双气室空气互联悬架 (PIS 悬架),并应用于侧翻事故发生率极高的全地形车上. 建立了交叉型双气室气体耦合 AMEsim 模型与全地形车整车动力学 ADAMS/Car 模型,通过将前者模型中的空气弹簧弹性力作为整车动力学模型的输入变量,将后者模型中的空气弹簧压缩伸张位移作为气体耦合模型的输入变量,建立了完整的机械-气体耦合多自由度动力学联合仿真模型. 通过 J 型弯高速典型仿真实验对搭载 PIS 悬架、双气室非互联悬架 (UN-PIS 悬架) 和普通螺旋弹簧悬架 (HS 悬架) 的全地形车进行侧倾特性对比研究. 研究结果显示,PIS 悬架若关闭互联管路,则会形成 UN-PIS 非互联状态,使悬架刚度瞬间大幅上升,平顺性瞬间变差,而具有相同垂向刚度的 PIS 悬架与 HS 悬架,前者能够提供更多的侧倾角刚度. 研究了气路系统 中影响动态侧倾特性的相关因子,包括连接管路管长、管径、附加气室容积. 研究表明,互联管路管长越小,越有利于提升全地形车侧倾特性,存在临界管径,管径小于或大于该值时,均会小幅度提升侧倾特性,附加气室容积越小,侧倾角刚度越大,为 PIS 悬架气路系统设计提供理论依据.   相似文献   

20.
This paper presents a simple, reliable dynamics model of off-road vehicle operation in real-time (RT) on terrain with obstacles. The numerical model was formulated by a new method – DBD (Discrete Body Dynamics). The new method is based on a discrete-element method, where the equations of motion are linear and simple to solve.In this new method, the suspension systems are composed of soft and stiff springs and dampers (instead of suspension arms and joints constrains), to present the kinematics and dynamics of real suspension. Reduction of the number of bodies and avoidance of constraints significantly improves model efficiency and simplicity.The tires–soil interaction was modeled using Brixius prediction. Specific soil properties were obtained from the classification system for each tire–soil interaction, size, and geometric area. The tire–ground contact was determined by topographic surface and adjustment of the forces and direction acting on the tires.The proposed method allows quick and simple definition of a vehicle. The model is written as an independent software infrastructure, enabling easy integration with any other software component.Simulation results were compared with Siemens' VL commercial multibody dynamics program. The performance of the proposed method was very similar to the commercial program (R2 > 0.9), with the significant advantage of much higher RT performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号