首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In this article, we have developed an overlapping Schwarz method for a weakly coupled system of convection-diffusion equations. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region, we use the central finite difference scheme on a uniform mesh, whereas on the nonlayer region, we use the mid-point difference scheme on a uniform mesh. It is shown that the numerical approximations converge in the maximum norm to the exact solution. We have proved that, when appropriate subdomains are used, the method produces almost second-order convergence. Furthermore, it is shown that two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantage of this method used with the proposed scheme is that it reduces iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.  相似文献   

2.
Schwarz methods are an important type of domain decomposition methods. Using the Fourier transform, we derive error propagation matrices and their spectral radii of the classical Schwarz alternating method and the additive Schwarz method for the biharmonic equation in this paper. We prove the convergence of the Schwarz methods from a new point of view, and provide detailed information about the convergence speeds and their dependence on the overlapping size of subdomains. The obtained results are independent of any unknown constant and discretization method, showing that the Schwarz alternating method converges twice as quickly as the additive Schwarz method.  相似文献   

3.
In this paper, a pressure correction algorithm for computing incompressible flows is modified and implemented on unstructured Chimera grid. Schwarz method is used to couple the solutions of different sub-domains. A new interpolation to ensure consistency between primary variables and auxiliary variables is proposed. Other important issues such as global mass conservation and order of accuracy in the interpolations are also discussed. Two numerical simulations are successfully performed. They include one steady case, the lid-driven cavity and one unsteady case, the flow around a circular cylinder. The results demonstrate a very good performance of the proposed scheme on unstructured Chimera grids. It prevents the decoupling of pressure field in the overlapping region and requires only little modification to the existing unstructured Navier–Stokes (NS) solver. The numerical experiments show the reliability and potential of this method in applying to practical problems.  相似文献   

4.
This paper is concerned with the formulation and the evaluation of a hybrid solution method that makes use of domain decomposition and multigrid principles for the calculation of two-dimensional compressible viscous flows on unstructured triangular meshes. More precisely, a non-overlapping additive domain decomposition method is used to coordinate concurrent subdomain solutions with a multigrid method. This hybrid method is developed in the context of a flow solver for the Navier-Stokes equations which is based on a combined finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi-discrete equations is performed using a linearized backward Euler implicit scheme. As a result, each pseudo time step requires the solution of a sparse linear system. In this study, a non-overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. Algebraically, the Schwarz algorithm is equivalent to a Jacobi iteration on a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In the present approach, the interface unknowns are numerical fluxes. The interface system is solved by means of a full GMRES method. Here, the local system solves that are induced by matrix-vector products with the interface operator, are performed using a multigrid by volume agglomeration method. The resulting hybrid domain decomposition and multigrid solver is applied to the computation of several steady flows around a geometry of NACA0012 airfoil.  相似文献   

5.
We report on our recent efforts on the formulation and the evaluation of a domain decomposition algorithm for the parallel solution of two‐dimensional compressible inviscid flows. The starting point is a flow solver for the Euler equations, which is based on a mixed finite element/finite volume formulation on unstructured triangular meshes. Time integration of the resulting semi‐discrete equations is obtained using a linearized backward Euler implicit scheme. As a result, each pseudo‐time step requires the solution of a sparse linear system for the flow variables. In this study, a non‐overlapping domain decomposition algorithm is used for advancing the solution at each implicit time step. First, we formulate an additive Schwarz algorithm using appropriate matching conditions at the subdomain interfaces. In accordance with the hyperbolic nature of the Euler equations, these transmission conditions are Dirichlet conditions for the characteristic variables corresponding to incoming waves. Then, we introduce interface operators that allow us to express the domain decomposition algorithm as a Richardson‐type iteration on the interface unknowns. Algebraically speaking, the Schwarz algorithm is equivalent to a Jacobi iteration applied to a linear system whose matrix has a block structure. A substructuring technique can be applied to this matrix in order to obtain a fully implicit scheme in terms of interface unknowns. In our approach, the interface unknowns are numerical (normal) fluxes. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
This paper discusses computational modeling of micro flow in the head–disk interface (HDI) gap using the direct simulation Monte Carlo (DSMC) method. Modeling considerations are discussed in detail both for a stand‐alone DSMC computation and for the case of a hybrid continuum–atomistic simulation that couples the Navier–Stokes (NS) equation to a DSMC solver. The impact of the number of particles and number of cells on the accuracy of a DSMC simulation of the HDI gap is investigated both for two‐ and three‐dimensional configurations. An appropriate implicit boundary treatment method for modeling inflow and outflow boundaries is used in this work for a three‐dimensional DSMC micro flow simulation. As the flow outside the slider is in the continuum regime, a hybrid continuum–atomistic method based on the Schwarz alternating method is used to couple the DSMC model in the slider bearing region to the flow outside the slider modeled by NS equation. Schwarz coupling is done in two dimensions by taking overlap regions along two directions and the Chapman–Enskog distribution is employed for imposing the boundary condition from the continuum region to the DSMC region. Converged hybrid flow solutions are obtained in about five iterations and the hybrid DSMC–NS solutions show good agreement with the exact solutions in the entire domain considered. An investigation on the impact of the size of the overlap region on the convergence behavior of the Schwarz method indicates that the hybrid coupling by the Schwarz method is weakly dependent on the size of the overlap region. However, the use of a finite overlap region will facilitate the exchange of boundary conditions as the hybrid solution has been found to diverge in the absence of an overlap region for coupling the two models. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper describes a domain decomposition numerical procedure for solving the Navier-Stokes equations in regions with complex geometries. The numerical method includes a modified version of QUICK (quadratic upstream interpolation convective kinematics) for the formulation of convective terms and a central difference scheme for the diffusion terms. A second-order-accurate predictor-corrector scheme is employed for the explicit time stepping. Although the momentum equations are solved independently on each subdomain, the pressure field is computed simultaneously on the entire flow field. A multigrid technique coupled with a Schwarz-like iteration method is devised to solve the pressure equation over the composite domains. The success of this strategy depends crucially on appropriate methods for specifying intergrid pressure boundary conditions on subdomains. A proper method for exchanging information among subdomains during the Schwarz sweep is equally important to the success of the multigrid solution for the overall pressure field. These methods are described and subsequently applied to two forced convection flow problems involving complex geometries to demonstrate the power and versatility of the technique. The resulting pressure and velocity fields exhibit excellent global consistency. The ability to simulate complex flow fields with this method provides a powerful tool for analysis and prediction of mixing and transport phenomenon.  相似文献   

9.
In this paper, the Chimera method with the Schwarz algorithm, which is one of overlapping domain decomposition methods, is applied for a flow around a rotating body. The incompressible Navier–Stokes equations expressed in a non-inertial frame of reference are used for the governing equations. The implicit scheme with accuracy of the second order is used for the temporal discretization. The mixed finite element formulation with the iso-P2 P1/P1 elements for velocity and pressure elements is used for the spatial discretization. For numerical examples, two-dimensional analyses of flow around a circular cylinder and an ellipse cylinder which rotate uniformly in a uniform flow were performed, the validity of the present technique was verified and the characteristics of the flow were considered.  相似文献   

10.
Optimized Schwarz methods are working like classical Schwarz methods, but they are exchanging physically more valuable information between subdomains and hence have better convergence behaviour. The new transmission conditions include also derivative information, not just function values, and optimized Schwarz methods can be used without overlap. In this paper, we present a new optimized Schwarz method without overlap in the 2d case, which uses a different Robin condition for neighbouring subdomains at their common interface, and which we call two‐sided Robin condition. We optimize the parameters in the Robin conditions and show that for a fixed frequency an asymptotic convergence factor of 1 – O(h1/4) in the mesh parameter h can be achieved. If the frequency is related to the mesh parameter h, h = O(1/ωγ) for γ?1, then the optimized asymptotic convergence factor is 1 – O(1–2γ)/8). We illustrate our analysis with 2d numerical experiments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
A fixed domain approach and a Baiocchi type transformation in conjunction with a modified Schwarz alternating iteration scheme are used to solve problems of flow past truncated convex shaped profiles between walls in a logarithmic hodograph plane. The flows are such that an open wake or cavity is formed behind the profile. The basic numerical scheme consists of the successive over-relaxation finite difference approach over the whole domain of the problem with the use of a projection operation over only part of the domain. The numerical results that are obtained using this approach for the cases of a truncated circular arc profile and a wedge profile are compared with published results and are found to be in good agreement.  相似文献   

12.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.  相似文献   

13.
14.
NUMERICALMODELINGOFTHEINITIALSTAGEOFTHEGENERATIONOFUNSTEADYVORTICESFROMSHARPCORNERINPLANECOMPRESSIBLEFLOWHuangDun(黄敦)(Depart....  相似文献   

15.
This paper studies the application of two‐level Schwarz algorithms to several models of computational fluid dynamics. The purpose is to build an algorithm suitable for elliptic and convective models. The subdomain approximated solution relies on the incomplete lower‐upper factorization. The algebraic coupling between the coarse grid and the Schwarz preconditioner is discussed. The deflation method and the balancing domain decomposition method are studied for introducing the coarse‐grid correction as a preconditioner. Standard coarse grids are built with the characteristic or indicator functions of the subdomains. The building of a set of smooth basis functions (analogous to smoothed‐aggregation methods) is considered. A first test problem is the Poisson problem with a discontinuous coefficient. The two options are compared for the standpoint of coarse‐grid consistency and for the gain in scalability of the global Schwarz iteration. The advection–diffusion model is then considered as a second test problem. Extensions to compressible flows (together with incompressible flows for comparison) are then proposed. Parallel applications are presented and their performance measured. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A conservative local interface sharpening scheme has been developed for the constrained interpolation profile method with the conservative semi‐Lagrangian scheme, because the conservative semi‐Lagrangian scheme does not feature a mechanism to control the interface thickness, thus causing an increase of numerical error with the advance of the time step. The proposed sharpening scheme is based on the conservative level set method proposed by Olsson and Kreiss. However, because their method can cause excessive deformation of the free‐surface in certain circumstances, we propose an improvement of the method by developing a local sharpening technique. Several advection tests are presented to assess the correctness of the advection and the improved interface sharpening scheme. This is followed by the validations of dam‐breaking flow and the rising bubble flows. The mass of the fluid is exactly conserved and the computed terminal velocity of the rising bubble agrees well with the experiments compared with other numerical methods such as the volume of fluid method (VOF), the front tracking method, and the level set method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The conventional shape function for the finite-element method (FEM) is linear, and it is thus inadequate for analyzing numerically complex flows at high Reynolds numbers. In this study, we propose a new scheme, GSMAC-CIP, using the third-order shape function, which requires continuity of the value of the function and its first space derivative in the whole space and is formulated by a finite element method for the cubic interpolated pseudo-particle (CIP) method. We verified the effectiveness of this new scheme by analyzing the forced-driven convection in a square cavity at Re = 1000, 5000 and 10000. The numerical results obtained by the present scheme are compared with those of GSMAC-FEM using coarser meshes, and it is shown that the present scheme is superior to GSMAC-FEM in terms of space accuracy. Moreover, it is shown that the numerical results obtained by the present scheme using fine meshes were in precise agreement with those obtained by Ghia et al.  相似文献   

18.
提出一种Fourier-Legendre谱元方法用于求解极坐标系下的Navier-Stokes方程,其中极点所在单元的径向采用Gauss-Radau积分点,避免了r=0处的1/r坐标奇异性。时间离散采用时间分裂法,引入数值同位素模型跟踪同位素的输运过程验证数值模拟的精度,分别利用谱元法和有限差分法的迎风差分格式求解匀速和加速坩埚旋转流动中的同位素方程。计算结果表明,有限差分法中的一阶迎风差分格式存在严重的数值假扩散,二阶迎风差分格式的数值结果较精确,增加节点可以有效地缓解数值扩散。然而,谱元法具有以较少节点得到高精度解的优势。  相似文献   

19.
给出了求解多维无粘可压Euler方程组的四阶半离散中心迎风格式,该格式根据非线性波在网格单元边界上传播的局部速度来更准确地估计局部Riemann的宽度,避免了计算网格的交错,降低了格式的数值粘性。同时,考虑到Level Set函数能隐式地追踪到界面的位置,而虚拟流的构造能隐式地捕捉到界面的边界条件,因此再将新的四阶半离散中心迎风格式与Level Set方法以及虚拟流方法相结合,成功地处理了非反应激波和多介质流中爆轰间断的追踪问题。  相似文献   

20.
The application ad litteram of the complex variable method for solving plane elastic problems according to the classical procedure of analytic continuation may present some ambiguities. These can be resolved after a careful application of the Schwarz Reflection Principle in constructing the stress functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号