首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An expression is derived for equivalent foundation of a viscoelastic half-space interacting with an Euler–Bernoulli beam. It is shown that this equivalent viscoelastic foundation depends on frequencies and wave numbers of the waves in the beam. The real and imaginary part of it substantially varies for phase velocities in between the Rayleigh and shear waves velocities. Radiation of elastic waves occurs for velocities larger than some velocity in that interval. The steady-state beam displacements due to a uniformly moving constant load are calculated for different velocities. The maximum displacement under the load takes place for a velocity of order of the Rayleigh waves velocity.  相似文献   

2.
Based on Timoshenko beam theory, the dynamic response of an elastically connected multiple-beam system is investigated. The identical prismatic beams are assumed to be parallel and connected by a finite number of springs. Assuming n parallel Timoshenko beams, the motion of the system is described by a coupled set of 2n partial differential equations. The method involves a change of variables and modal analysis to decouple and to solve the governing differential equations, respectively. A case study is solved in detail to demonstrate the methodology and several plots of the midpoint deflections of beams are given and investigated for different values of moving load velocity and the stiffness of elastic connections. From the numerical results it is observed that the maximum deflection of the multiple Timoshenko beam system is always smaller than one of a single beam.  相似文献   

3.
The contributions of compressive load and support damping are included into the formulation of flexural wave motion in beams lying on elastic (Winkler) foundation. The beam is modeled by both Euler–Bernoulli’s and Timoshenko’s theories. First, dispersion analysis is performed, which reveals that, for a fixed wavenumber, phase velocity decreases as the intensity of the compressive force or the value of the support damping is increased. Secondly, the transverse displacement of a semi-infinite beam excited by a velocity step pulse at its finite end is examined in the transient regime by adopting Laplace transform approach. This latter study sustains the validity of the dispersion analysis outcomes and shows that compressive load and support damping cause an amplification and a diminution, respectively, of the displacement amplitudes at the various positions of the beam.  相似文献   

4.
The vibrations and dissipative heating of an infinite viscoelastic beam under a moving load are studied on the basis of Timoshenko beam theory. The influence of transverse-shear strain and rotary inertia on the critical velocities of the moving load, the amplitude of bending vibration, and the temperature of dissipative heating is analyzed__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 69–76, January 2005.  相似文献   

5.
Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discussed for the first time. The beam is supported by torsional springs and vertical springs at both ends. By modifying the stiffness of the springs, generalized boundaries can replace those classical boundaries.Dynamic stiffness matrices are, respectively, established for axially moving Timoshenko beams and Euler-Bernoulli(EB) beams with generalized boundaries. In order to verify the applicability of the EB model, the natural frequencies of the axially moving Timoshenko beam and EB beam are compared. Furthermore, the effects of constrained spring stiffness on the vibration frequencies of the axially moving beam are studied. Interestingly, it can be found that the critical speed of the axially moving beam does not change with the vertical spring stiffness. In addition, both the moving speed and elastic boundaries make the Timoshenko beam theory more needed. The validity of the dynamic stiffness method is demonstrated by using numerical simulation.  相似文献   

6.
This paper investigates the dynamic response to a time-harmonic oscillating moving load of a system comprising a covering layer and half-plane, within the scope of the piecewise-homogeneous body model utilizing of the exact equations of the linear theory of elastodynamics. It is assumed that the materials of the layer and half-plane are anisotropic (orthotropic), and that the velocity of the line-located time-harmonic oscillating moving load is constant as it acts on the free face of the covering layer. Our investigations were carried out for a two-dimensional problem (plane-strain state) under subsonic velocity for a moving load in complete and incomplete contact conditions. The corresponding numerical results were obtained for the stiffer layer and soft half-plane system in which the modulus of elasticity of the covering layer material (for the moving direction of the load) is greater than that of the half-plane material. Numerical results are presented and discussed for the critical velocity, displacement and stress distribution for various values of the problem parameters. In particular, it is established that the critical velocity of the moving load is controlled mainly with a Rayleigh wave speed of a half-plane material and the existence of the oscillation of the moving load causes two types of critical velocity to appear: one of which is less, but the other one is greater than that attained for the case where the mentioned oscillation is absent.  相似文献   

7.
高速移动荷载下黏弹性半空间体的动力响应   总被引:2,自引:0,他引:2  
周华飞  蒋建群 《力学学报》2007,39(4):545-553
分别以移动荷载和黏弹性半空间体模拟运动列车荷载和地基,分析了地基在运动列车作用下的动力响应.首先采用Green函数法求解黏弹性半空间体在各种移动荷载模式作用下的动力响应的解析解,包括恒常和简谐移动点源、线源和面源荷载.然后采用IFFT算法和自适应数值积分算法计算解析解中的二维积分,得到了包括低音速、跨音速和超音速移动荷载作用下位移的数值结果.最后分析了速度对位移的分布和最大值的影响,发现当速度大于Rayleigh波速时,位移发生显著变化.  相似文献   

8.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

9.
The present paper investigates the dynamic response of finite Timoshenko beams resting on a sixparameter foundation subjected to a moving load. It is for the first time that the Galerkin method and its convergence are studied for the response of a Timoshenko beam supported by a nonlinear foundation. The nonlinear Pasternak foundation is assumed to be cubic. Therefore, the efects of the shear deformable beams and the shear deformation of foundations are considered at the same time. The Galerkin method is utilized for discretizing the nonlinear partial differential governing equations of the forced vibration. The dynamic responses of Timoshenko beams are determined via the fourth-order Runge–Kutta method. Moreover, the efects of diferent truncation terms on the dynamic responses of a Timoshenko beam resting on a complex foundation are discussed. The numerical investigations shows that the dynamic response of Timoshenko beams supported by elastic foundations needs super high-order modes. Furthermore, the system parameters are compared to determine the dependence of the convergences of the Galerkin method.  相似文献   

10.
Summary In this contribution, attention is focused on the problem of a moving load on a Timoshenko beam-half plane system. Both the subcritical and the supercritical state will be analysed via a FE-simulation. The character of the response is explained by the analytical derivation and the elaboration of the eigen-value problem that follows from the characteristic wave equations together with the boundary conditions. It will be demonstrated that also transcritical states can occur. The total number of critical states and the values of the corresponding critical velocities are determined by the beam-half plane stiffness properties as well as the contact conditions. Received 24 February 1997; accepted for publication 23 July 1997  相似文献   

11.
高速荷载下多孔饱和地基的动力响应   总被引:8,自引:0,他引:8  
金波 《力学季刊》2004,25(2):168-174
研究高速荷载作用下梁与多孔饱和半空间的动力响应。由Fourier变换求解多孔饱和固体的动力基本方程,根据梁与半空间的接触条件得出多孔饱和半空间上梁的垂直位移的表达式。文中的数值算例考虑了荷载移动速度对梁的动力位移的影响,并与相应的弹性半空间问题作了对比。从算例中可以发现荷载移动速度对动力位移有很大的影响,当移动速度与半空间的表面波速相近时,地面会当产生很大的振动,同时还发现当速度大于介质的剪切波速时,多孔饱和半空间上梁的动力响应与弹性半空间上梁的动力响应有很大的差别。  相似文献   

12.
The aeroelastic stability of rotating beams with elastic restraints is investigated. The coupled bending-torsional Euler-Bernoulli beam and Timoshenko beam models are adopted for the structural modeling. The Greenberg aerodynamic model is used to describe the unsteady aerodynamic forces. The additional centrifugal stiffness effect and elastic boundary conditions are considered in the form of potential energy. A modified Fourier series method is used to assume the displacement field function and solve the governing equation. The convergence and accuracy of the method are verified by comparison of numerical results. Then, the flutter analysis of the rotating beam structure is carried out, and the critical rotational velocity of the flutter is predicted. The results show that the elastic boundary reduces the critical flutter velocity of the rotating beam, and the elastic range of torsional spring is larger than the elastic range of linear spring.  相似文献   

13.
饱和多孔弹性Timoshenko梁的大挠度分析   总被引:1,自引:0,他引:1  
基于微观不可压饱和多孔介质理论和弹性梁的大挠度变形假设,考虑梁剪切变形效应,在梁轴线不可伸长和孔隙流体仅沿轴向扩散的限定下,建立了饱和多孔弹性Timoshenko梁大挠度弯曲变形的非线性数学模型.在此基础上,利用Galerkin截断法,研究了两端可渗透简支饱和多孔Timoshenko梁在突加均布横向载荷作用下的拟静态弯曲,给出了饱和多孔 Timoshenko梁弯曲变形时固相挠度、弯矩和孔隙流体压力等效力偶等随时间的响应.比较了饱和多孔Timoshenko梁非线性大挠度和线性小挠度理论以及饱和多孔 Euler-Bernoulli梁非线性大挠度理论的结果,揭示了他们间的差异,指出当无量纲载荷参数q>l0时,应采用饱和多孔Timoshenko梁或Euler-Bernoulli梁的大挠度数学模型进行分析,特别的,当梁长细比λ<30时,应采用饱和多孔Timoshenko梁大挠度数学模型进行分析.  相似文献   

14.
The equivalent dynamic rigidity of the Timoshenko beam resting on an elastoviscous base and interacting with a point object moving uniformly on it is studied. A generic relation for the equivalent rigidity of the beam is obtained and analyzed. The equivalent rigidity is studied as a function of the object velocity. A comparative analysis of equivalent rigidities of the Timoshenko and Bernoulli—Euler beams is performed.  相似文献   

15.
This paper investigates the steady-state responses of a Timoshenko beam of infinite length supported by a nonlinear viscoelastic Pasternak foundation subjected to a moving harmonic load. The nonlinear viscoelastic foundation is assumed to be a Pasternak foundation with linear-plus-cubic stiffness and viscous damping. Based on Timoshenko beam theory, the nonlinear equations of motion are derived by considering the effects of the shear deformable beams and the shear modulus of foundations at the same time. For the first time, the modified Adomian decomposition method(ADM) is used for solving the response of the beam resting on a nonlinear foundation. By employing the standard ADM and the modified ADM, the nonlinear term is decomposed, respectively. Based on the Green's function and the theorem of residues presented,the closed form solutions for those linear iterative equations have been determined via complex Fourier transform. Numerical results indicate that two kinds of ADM predict qualitatively identical tendencies of the dynamic response with variable parameters, but the deflection of beam predicted by the modified ADM is smaller than that by the standard ADM. The influence of the shear modulus of beams and foundation is investigated. The numerical results show that the deflection of Timoshenko beams decrease with an increase of the shear modulus of beams and that of foundations.  相似文献   

16.
For the cases of using the finite curved beam elements and taking the effects of both the shear deformation and rotary inertias into consideration, the literature regarding either free or forced vibration analysis of the curved beams is rare. Thus, this paper tries to determine the dynamic responses of a circular curved Timoshenko beam due to a moving load using the curved beam elements. By taking account of the effect of shear deformation and that of rotary inertias due to bending and torsional vibrations, the stiffness matrix and the mass matrix of the curved beam element were obtained from the force–displacement relations and the kinetic energy equations, respectively. Since all the element property matrices for the curved beam element are derived based on the local polar coordinate system (rather than the local Cartesian one), their coefficients are invariant for any curved beam element with constant radius of curvature and subtended angle and one does not need to transform the property matrices of each curved beam element from the local coordinate system to the global one to achieve the overall property matrices for the entire curved beam structure before they are assembled. The availability of the presented approach has been verified by both the existing analytical solutions for the entire continuum curved beam and the numerical solutions for the entire discretized curved beam composed of the conventional straight beam elements based on either the consistent-mass model or the lumped-mass model. In addition to the typical circular curved beams, a hybrid curved beam composed of one curved-beam segment and two identical straight-beam segments subjected to a moving load was also studied. Influence on the dynamic responses of the curved beams of the slenderness ratio, moving-load speed, shear deformation and rotary inertias was investigated.  相似文献   

17.
This investigation is concerned with the dynamic displacements of a beam on a poroelastic half space under a periodic oscillating load of constant velocity. The governing equations for the proposed analysis are solved using Fourier transform. The expression for the vertical displacement is obtained according to the contact condition between a beam and a half space. The effects of the moving velocity and vibration frequency of the load on the dynamic displacement are considered in the numerical examples. The results show that the load velocity has significant influence on dynamic displacement. It is also noted that large differences exist between the dynamic responses for a beam on a poroelastic half space and on an elastic half space when the load velocity is larger than the shear wave speed of the medium. The reported work is supported by the National Natural Science Foundation of China (Project No. 10372073).  相似文献   

18.
This paper investigates the dynamic response to a moving load of a system comprising an initially stressed covering layer and initially stressed half-plane, within the scope of the piecewise-homogeneous body model utilizing three-dimensional linearized wave propagation theory in the initially stressed body. It was assumed that the materials of the layer and half-plane are anisotropic (orthotropic), and that the velocity of the line-located moving load is constant as it acts on the free face of the covering layer. The investigations were made for a two-dimensional problem (plane-strain state) under subsonic velocity of the moving load for complete and incomplete contact conditions. Corresponding numerical results were obtained for the stiffer layer and soft half-plane system in which the modulus of elasticity of the covering layer material (for the moving direction of the load) is greater than that of the half-plane material, which was assumed to be isotropic. Numerical results are presented and discussed for the critical velocity and stress distribution for various values of the problem parameters. In particular, it was established that, the critical velocity of the moving load is controlled mainly with a Rayleigh wave speed of a half-plane material and the initial stretching of the covering layer causes to increase these values.  相似文献   

19.
ABSTRACT

A continuum-based design sensitivity analysis (DSA) method is presented for configuration design of nonlinear structural systems using Mindlin plate and Tim-oshenko beam theories. Both displacement and critical load performance measures are considered. Configuration design variables are characterized by shape and orientation changes of structural components. The material derivative that is used to develop the continuum-based shape DSA method is extended to account for effects of configuration design variation. The piecewise linear design velocity field, i.e., C0-regular, is used to support configuration design changes for a broad class of built-up structures with beams and plates. To allow use of the C0-design velocity field, mathematical models of beam and plate bending must be second-order partial differential equations, so that only first-order derivatives appear in the integrand of the energy equation and, thus, in the integrand of the configuration design sensitivity expression. Since the Mindlin plate and Timoshenko beam theories use displacement and rotation to describe structural response, mathematical models of beam and plate bending are reduced to second-order partial differential equations. The isoparametric finite element formulations are used for numerical evaluation of continuum design sensitivity expressions.  相似文献   

20.
The wave processes in a semi-infinite rod located in an elastic medium and subjected to a point load moving at a constant velocity are considered. The system of two differential equations of motion of Timoshenko beam theory is solved using the Laplace transform in time. The integrals obtained are determined numerically. Variation of the bending moment on the longitudinal coordinate behind the elastic-wave front and the region of action of the point force at various times is shown. The results of the solution are influence functions. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 2, pp. 112–122, March–April, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号