首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Non-linear dynamic response of a rotating radial Timoshenko beam with periodic pulse loading at the free-end
Authors:Sunil K Sinha
Institution:G.E. Aircraft Engines, M.D. A-412, General Electric Company,1 Neumann Way, Cincinnati, OH 45215, USA
Abstract:Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号