首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Lagrange-I equations and measure differential equations for multibody systems with unilateral and bilateral constraints are constructed.For bilateral constraints,frictional forces and their impulses contain the products of the filled-in relay function induced by Coulomb friction and the absolute values of normal constraint reactions.With the time-stepping impulse-velocity scheme,the measure differential equations are discretized.The equations of horizontal linear complementarity problems(HLCPs),which are used to compute the impulses,are constructed by decomposing the absolute function and the filled-in relay function.These HLCP equations degenerate into equations of LCPs for frictional unilateral constraints,or HLCPs for frictional bilateral constraints.Finally,a numerical simulation for multibody systems with both unilateral and bilateral constraints is presented.  相似文献   

2.
The dynamic modeling and analysis of planar rigid multibody systems that experience contact-impact events is presented and discussed throughout this work. The methodology is based on the nonsmooth dynamics approach, in which the interaction of the colliding bodies is modeled with multiple frictional unilateral constraints. Rigid multibody systems are stated as an equality of measures, which are formulated at the velocity-impulse level. The equations of motion are complemented with constitutive laws for the forces and impulses in the normal and tangential directions. In this work, the unilateral constraints are described by a set-valued force law of the type of Signorini??s condition, while the frictional contacts are characterized by a set-valued force law of the type of Coulomb??s law for dry friction. The resulting contact-impact problem is formulated and solved as an augmented Lagrangian approach, which is embedded in the Moreau time-stepping method. The effectiveness of the methodologies presented in this work is demonstrated throughout the dynamic simulation of a cam-follower system of an industrial cutting file machine.  相似文献   

3.
双面约束多点摩擦多体系统的建模和数值方法   总被引:3,自引:1,他引:2  
提出了一种建立具有固定双面约束多点摩擦的多体系统动力学方程的方法. 用笛卡尔坐标阵描述系统的位形,根据局部方法的递推关系建立系统的约束方程,应用第一类Lagrange方程建立该系统的动力学方程,使得具有摩擦的约束面的法向力与Lagrange乘子一一对应,便于摩擦力的分析与计算,并用矩阵形式给出了摩擦力的广义力的一般表达式. 应用增广法将微分-代数方程组转化为常微分方程组,并用分块矩阵的形式给出,以便于方程的编程与计算.给出了一种改进的试算法,可提高计算效率. 最后给出了一个算例,应用试算法和RK法对算例进行了数值仿真.   相似文献   

4.
Based on the dynamical theory of multi-body systems with nonholonomic constraints and an algorithm for complementarity problems, a numerical method for the multi-body systems with two-dimensional Coulomb dry friction and nonholonomic constraints is presented. In particular, a wheeled multi-body system is considered. Here,the state transition of stick-slip between wheel and ground is transformed into a nonlinear complementarity problem(NCP). An iterative algorithm for solving the NCP is then presented using an event-driven method. Dynamical equations of the multi-body system with holonomic and nonholonomic constraints are given using Routh equations and a constraint stabilization method. Finally, an example is used to test the proposed numerical method. The results show some dynamical behaviors of the wheeled multi-body system and its constraint stabilization effects.  相似文献   

5.
A mathematical model of a variable-structure system of solids with rolling friction and unilateral sliding friction bonds is described. The model can be applied to seismic isolation mechanisms. Conditions for transition between the possible structures of the equations of state are formulated. The behavior of the system with kinematically defined motion of the base is analyzed as an example__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 1, pp. 119–127, January 2005.  相似文献   

6.
王晓军  吕敬  王琪 《力学学报》2019,51(1):209-217
基于LuGre摩擦模型和线性互补问题(LCP)的数值算法,给出了具有双边约束含摩擦滑移铰平面多体系统动力学的数值算法.首先,根据滑移铰的特点,当间隙充分小时,将其视为双边约束,给出了滑移铰中滑道作用于滑块上的法向接触力的互补关系;LuGre摩擦模型能有效地描述机械系统中的黏滞与滑移运动,将该模型用于描述滑块与滑道间的摩擦力.其次,结合Baumgarte约束稳定化方法,应用第一类Lagrange方程,建立了该多体系统的动力学方程,给出了Lagrange乘子与滑移铰中作用于滑块上的法向接触力的关系式.然后,将滑块与滑道间多种接触状态的判断以及作用于滑块上的法向接触力的计算转换为线性互补问题的求解,并用常微分方程的数值算法求解该多体系统的动力学方程.最后,通过数值仿真算例揭示了滑移铰中滑块的黏滞与滑移现象,以及滑块在滑道内的多种接触状态;另外,在文中分别采用Coulomb干摩擦模型和LuGre摩擦模型,对算例中的某些工况进行了数值仿真,并且分别用本文方法得到的数值仿真结果与已有方法得到的数值仿真结果对比,表明了本文给出的方法的有效性.   相似文献   

7.
陈菊  吴惠彬  梅凤翔 《力学学报》2016,48(4):972-975
对于完整力学系统,若选取的参数不是完全独立的,则称为有多余坐标的完整系统. 由于完整力学系统的第二类Lagrange 方程中没有约束力,故为研究完整力学系统的约束力,需采用有多余坐标的带乘子的Lagrange方程或第一类Lagrange 方程. 一些动力学问题要求约束力不能为零,而另一些问题要求约束力很小. 如果约束力为零,则称为系统的自由运动问题. 本文提出并研究了有多余坐标完整系统的自由运动问题. 为研究系统的自由运动,首先,由d'Alembert-Lagrange 原理, 利用Lagrange 乘子法建立有多余坐标完整系统的运动微分方程;其次,由多余坐标完整系统的运动方程和约束方程建立乘子满足的代数方程并得到约束力的表达式;最后,由约束系统自由运动的定义,令所有乘子为零,得到系统实现自由运动的条件. 这些条件的个数等于约束方程的个数,它们依赖于系统的动能、广义力和约束方程,给出其中任意两个条件,均可以得到实现自由运动时对另一个条件的限制. 即当给定动能和约束方程,这些条件会给出实现自由运动时广义力之间的关系. 当给定动能和广义力,这些条件会给出实现自由运动时对约束方程的限制. 当给定广义力和约束方程,这些条件会给出实现自由运动时对动能的限制. 文末,举例并说明方法和结果的应用.   相似文献   

8.
In this work, solution methods for frictional contact problems are extended to the case of moving punches and to the external loading history-dependent system states. To solve the frictional contact problems in the contact area, an iterative method is developed and implemented. Solutions of two-dimensional problems are constructed using the boundary element method. Numerical analysis is aimed at the quantitative study of effects such as the interaction of contact pressure and friction forces, estimates of the friction force differences due to the differences in the choice of local basis for the calculation of normal pressure and friction forces, and evaluation of the effects of complex loading (rotation of the rigid punch after its preliminary penetration into the solid). We find that, for the same definition of the friction force, different initial approximations lead to the same solution. At the same time, the friction forces defined either as projections onto the common tangent plane or as projections onto the plane tangent to the punch can differ quite substantially. Similar conclusions are derived for the solutions corresponding to single or multiple loading steps. The work relies on the variational principle for the solution of contact problems and numerical algorithms developed for the problems with one-sided constraints. The variational principle was first applied by Signorini [1] to the determination of the stress-strain state in a linearly deformed body in a rigid smooth shell. The modern view of the problem and its generalizations to the frictional problems and some other problems involving unilateral constraints in given in the monograph [2]. Finite difference and finite element methods in application to the problems with unilateral constraints are described in [3]. Analytical solution methods are developed in the monographs [4–6].  相似文献   

9.
10.
A rigid insulated die slides at a constant sub-critical speed on a transversely isotropic half-space in the presence of friction. In a two-dimensional analysis of the dynamic steady-state, the coupled equations of thermoelasticity are invoked. All elements of the Coulomb friction model are strictly enforced, thus giving rise to auxiliary conditions, including two unilateral constraints.Robust asymptotic forms of an exact solution to a related problem with unmixed boundary conditions lead to analytical solutions for the sliding indentation problem. The solution expressions, abetted by calculations for zinc, show the role of frictional heating on the half-space surface. The effects of friction and sliding speed on contact zone size and location and average contact zone temperature are also studied.The analysis is aided by factoring procedures that simplify the complicated forms that arise in anisotropic elasticity. A scheme that renders expressions for roots of certain irrational functions analytic to within a single quadrature also plays a role.  相似文献   

11.
富立  胡鸿奎  富腾 《力学学报》2017,49(5):1115-1125
基于非光滑动力学方法的多体系统接触碰撞分析是目前多体系统动力学的研究热点.本文采用牛顿-欧拉方法建立多体系统接触、碰撞问题的动力学模型,给出一种牛顿-欧拉型线性互补公式.该建模方法与目前一般采用的拉格朗日建模方法的不同之处是约束条件中除了库仑摩擦、单边约束之外还含有光滑等式约束.在建立系统动力学模型时,首先解除摩擦约束和单边约束得到原系统对应的基本系统.牛顿-欧拉方法采用最大数目坐标建立基本系统的动力学方程,由于坐标不相互独立,因此基本系统中带有等式约束,其数学模型为一组微分代数方程.借助约束雅可比矩阵,在基本系统微分代数方程中添加摩擦接触和单边约束对应的拉氏乘子,就可以得到系统全局运动的具有变拓扑结构特征的动力学方程,再结合非光滑约束互补条件便可构成完备的系统动力学模型.完备的动力学模型由动力学微分方程以及等式约束和不等式约束组成.线性互补公式采用分块矩阵形式进行推导,简化了推导过程.数值计算采用基于线性互补的时间步进算法.时间步进算法是目前流行的非光滑数值算法,其突出特点是可以免去数值积分中繁琐的事件检测过程,而数值积分过程中通过对线性互补问题的求解可以确定系统的触-离状态.通过对典型的曲柄滑块间隙机构进行数值分析,验证本文方法的有效性.  相似文献   

12.
This paper investigates the stabilization problem for a class of switched systems with state constraints in both continuous-time and discrete-time contexts. The state constraints are converted into state saturations by limiting the state in a unit hypercube. An improved average dwell time method is presented to take into account different decay rates of a Lyapunov function related to an active subsystem according to the saturations occurring or not. Sufficient conditions for stability and stabilizability of the switched system with state constraints are derived; meanwhile, the stabilizing state feedback controllers are designed. An application to a longitudinal motion of highly maneuverable aircraft technology (HiMAT) vehicle is given to illustrate the applicability and the effectiveness of the proposed method.  相似文献   

13.
王琪  庄方方  郭易圆  章杰  房杰 《力学进展》2013,43(1):101-111
非光滑多体系统动力学数值计算方法是多体系统动力学研究的重要内容之一. 本文介绍了近年来含摩擦与碰撞的非光滑多体系统动力学数值算法方面的研究进展. 首先, 讨论了库仑摩擦模型和修正的库仑摩擦模型, 以及具有单边和双边约束的多体系统中法向约束力的特点. 其次, 回顾了基于连续模型和非连续模型的多体系统动力学方程的数值计算方法, 详细介绍了基于互补概念的非光滑多体系统动力学的事件驱动法和时间步进法, 分析比较了相关的数值算法. 最后, 指出了一些需要进一步研究的问题.  相似文献   

14.
Contact stresses are identified as normal and tangential forces between contacting solids. The normal stresses are modeled using unilateral and complementary conditions, elastic response and normal compliance. Friction laws describe the tangential traction. Friction of materials depends on pressure, sliding velocity, surface temperature, time of contact, surface roughness and presence of wear debris. Phenomenological, micro-mechanical and atomic-scale models as well as non-classical models of anisotropic and heterogeneous friction are important steps in the development of friction modeling. Sophisticated friction models are desirable in vibrating systems, materials processing, rolling contacts, rubber and polymers, geomechanics, bioengineering and living systems. Main numerical methods in contact mechanics are: finite element method, boundary element method and discrete element method. To include specific contact constraints, the following computing techniques are applied: Lagrange multipliers, penalty function, perturbated and augmented Lagrangian methods, mathematical programming methods. The advances of adhesion and impact modeling are outlined in this paper.  相似文献   

15.
By introducing the generalized quasi-symmetry of the infinitestinal transformation for transformation groupG r , this paper studies the conservation laws and symmetries of dynamical systems with unilateral constraints in phase space. Noether's theorem and Noether's inverse theorem for mechanical systems with unilateral constraints in phase space are obtained and two kinds of equivalent forms of generalized Killing equations which are used to determine the generators of the infinitestinmal group transformation are given. The project sponsored by the National Natural Science Foundation and the Doctoral Programme Foundation of Institution of Higher Education of China.  相似文献   

16.
This paper describes an analysis procedure for the modeling of backlash, freeplay and friction in flexible multibody systems. The first two effects are formulated in a general manner as unilateral contact conditions in multibody dynamics. The incorporation of the effects of friction in joint elements is also discussed, together with an effective computational strategy. These non-standard effects are formulated within the framework of finite element based multibody dynamics that allows the analysis of complex, flexible systems of arbitrary topology. The versatility and generality of the approach are demonstrated by presenting applications to aerospace systems: the flutter analysis of a wing-aileron system with freeplay, the impact of an articulated rotor blade on its doop stop during engagement operation in high wind conditions, and the dynamic response of a space antenna featuring joints with friction.  相似文献   

17.
Many technical systems include steep characteristics for force laws, which as a rule lead to stiff differential equations and large computing times. For the dynamical performance such steep characteristics are very near to laws with set-valued properties and might therefore be replaced by set-valued force laws. This is true for multibody dynamics including unilateral contacts, and it is in an approximate way true for fluid mechanical systems like hydraulics. In the following we present a new modeling scheme for hydraulic systems, which establishes the hydraulic equations of motion in the form of multibody system eqations with bilateral and unilateral constraints, and which is able to reduce computing times by three to four order of magnitudes. A large industrial example illustrates the excellent performance of the new theory.  相似文献   

18.
An approach is proposed for modeling and anal- yses of rigid multibody systems with frictional translation joints and driving constraints. The geometric constraints of translational joints with small clearance are treated as bilat- eral constraints by neglecting the impact between sliders and guides. Firstly, the normal forces acting on sliders, the driv- ing constraint forces (or moments) and the constraint forces of smooth revolute joints are all described by complementary conditions. The frictional contacts are characterized by a set- valued force law of Coulomb's dry friction. Combined with the theory of the horizontal linear complementarity problem (HLCP), an event-driven scheme is used to detect the transi- tions of the contact situation between sliders and guides, and the stick-slip transitions of sliders, respectively. And then, all constraint forces in the system can be computed easily. Secondly, the dynamic equations of multibody systems are written at the acceleration-force level by the Lagrange multiplier technique, and the Baumgarte stabilization method is used to reduce the constraint drift. Finally, a numerical example is given to show some non-smooth dynamical behaviors of the studied system. The obtained results validate the feasibility of algorithm and the effect of constraint stabilization.  相似文献   

19.
Fast and accurate simulation of mechanical structures with complex geometry requires application of the finite element method. This leads frequently to models with a relatively large number of degrees of freedom, which may also possess non-linear properties. Things become more complicated for systems involving unilateral contact and friction. In classical structural dynamics approaches, such constraints are usually modeled by special contact elements. The characteristics of these elements must be selected in a delicate way, but even so the success of these methods cannot be guaranteed. This study presents a numerical methodology, which is suitable for determining dynamic response of large scale finite element models of mechanical systems with multiple unilateral constraints. The method developed is based on a proper combination of results from two classes of direct integration methodologies. The first one includes standard methods employed in determining dynamic response of structural models possessing smooth non-linearities. The second class of methods includes specialized methodologies that simulate the response of dynamical systems with unilateral constraints. The validity and effectiveness of the methodology developed is illustrated by numerical results.  相似文献   

20.
Variational principles for constrained systems: Theory and experiment   总被引:2,自引:0,他引:2  
In this paper we present two methods, the nonholonomic method and the vakonomic method, for deriving equations of motion for a mechanical system with constraints. The resulting equations are compared. Results are also presented from an experiment for a model system: a ball rolling without sliding on a rotating table. Both sets of equations of motion for the model system are compared with the experimental results. The effects of various forms of friction are considered in the nonholonomic equations. With appropriate friction terms, the nonholonomic equations of motion for the model system give reasonable agreement with the experimental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号