首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
本文对薄圆板的后屈曲进行了研究。采用Galerkin法,试函数选为Legendre多项式,控制方程是Von-karman大挠度方程。考虑了简支,夹支两种边界条件。计算结果与有关文献[1]进行了比较,表明以Legendre多项式为试函数收敛快,精度高,且计算工作量较文献[1]为小。  相似文献   

2.
This paper deals with the bending of rectangular thin plates point-supported at three corners using an analytic symplectic superposition method. The problems are of fundamental importance in both civil and mechanical engineering, but there were no accurate analytic solutions reported in the literature. This is attributed to the difficulty in seeking the solutions that satisfy the governing fourth-order partial differential equation with the free boundary conditions at all the edges as well as the support conditions at the corners. In the following, the Hamiltonian system-based equation for plate bending is formulated, and two types of fundamental problems are analytically solved by the symplectic method. The analytic solutions of the plates point-supported at three corners are then obtained by superposition, where the constants are obtained by a set of linear equations. The solution procedure presented in this paper offers a rigorous way to yield analytic solutions of similar problems. Some numerical results, validated by the finite element method, are shown to provide useful benchmarks for comparison and validation of other solution methods.  相似文献   

3.
This paper is concerned with the development of the finite element method in simulating scalar transport, governed by the convection–reaction (CR) equation. A feature of the proposed finite element model is its ability to provide nodally exact solutions in the one‐dimensional case. Details of the derivation of the upwind scheme on quadratic elements are given. Extension of the one‐dimensional nodally exact scheme to the two‐dimensional model equation involves the use of a streamline upwind operator. As the modified equations show in the four types of element, physically relevant discretization error terms are added to the flow direction and help stabilize the discrete system. The proposed method is referred to as the streamline upwind Petrov–Galerkin finite element model. This model has been validated against test problems that are amenable to analytical solutions. In addition to a fundamental study of the scheme, numerical results that demonstrate the validity of the method are presented. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A refined non-linear first-order theory of multilayered anisotropic plates undergoing finite deformations is elaborated. The effects of the transverse shear and transverse normal strains, and laminated anisotropic material response are included. On the basis of this theory, a simple and efficient finite element model in conjunction with the total Lagrangian formulation and Newton-Raphson method is developed. The precise representation of large rigid-body motions in the displacement patterns of the proposed plate elements is also considered. This consideration requires the development of the strain-displacement equations of the finite deformation plate theory with regard to their consistency with the arbitrarily large rigid-body motions. The fundamental unknowns consist of six displacements and 11 strains of the face planes of the plate, and 11 stress resultants. The element characteristic arrays are obtained by using the Hu-Washizu mixed variational principle. To demonstrate the accuracy and efficiency of this formulation and compare its performance with other non-linear finite element models reported in the literature, extensive numerical studies are presented.  相似文献   

5.
常规单元的插值函数通常仅考虑单元的几何形状与节点位置,而忽略了反映物理问题关键特性的物性参数,从而降低了其数值分析的效果。相反,理性有限元法是取问题微分控制方程的多项式基本解作为单元内的插值函数,其所形成的刚度阵与问题的物性参数紧密相关,因此它避免了常规有限元法对物理问题和数学问题的割裂,可显著提高数值分析的稳定性和精度。本文利用空间各向异性问题的基本解,构造出满足分片实验要求的八节点理性块体单元。数值算例表明,本文给出的理性单元不仅具有较高的求解精度,而且具有良好的数值稳定性,尤其是对较为畸形的单元反应不敏感。  相似文献   

6.
This study deals with postbuckling behavior of laminated composite plates under the combination of in-plane shear, compression and lateral loading using an Element-based Lagrangian formulation. Natural co-ordinate-based strains, stresses and constitutive equations are used in the present shell element. The Element-based Lagrangian formulation described in this paper, in comparison with the traditional approaches, is more attractive not only because it uses only single mapping but also it converges faster. In addition, the finite element (FE) formulation based on the assumed natural strain method for composite structures shows excellence from the standpoints of computational efficiency as well as its ability to avoid both membrane and shear locking behavior. The numerical results obtained are in good agreement with those reported by other investigators. In particular, new results reported in this paper show the influence of various types of loading, materials and number of layers on postbuckling behavior.  相似文献   

7.
The Non-uniform rational B-spline(NURBS)enhanced scaled boundary finite element method in combination with the modified precise integration method is proposed for the transient heat conduction problems in this paper.The scaled boundary finite element method is a semi-analytical technique,which weakens the governing differential equations along the circumferential direction and solves those analytically in the radial direction.In this method,only the boundary is discretized in the finite element sense leading to a reduction of the spatial dimension by one with no fundamental solution required.Nevertheless,in case of the complex geometry,a huge number of elements are generally required to properly approximate the exact shape of the domain and distorted meshes are often unavoidable in the conventional finite element approach,which leads to huge computational efforts and loss of accuracy.NURBS are the most popular mathematical tool in CAD industry due to its flexibility to fit any free-form shape.In the proposed methodology,the arbitrary curved boundary of problem domain is exactly represented with NURBS basis functions,while the straight part of the boundary is discretized by the conventional Lagrange shape functions.Both the concepts of isogeometric analysis and scaled boundary finite element method are combined to form the governing equations of transient heat conduction analysis and the solution is obtained using the modified precise integration method.The stiffness matrix is obtained from a standard quadratic eigenvalue problem and the mass matrix is determined from the low-frequency expansion.Finally the governing equations become a system of first-order ordinary differential equations and the time domain response is solved numerically by the modified precise integration method.The accuracy and stability of the proposed method to deal with the transient heat conduction problems are demonstrated by numerical examples.  相似文献   

8.
In this paper,based on the step reduction method and exact analytic method,a new method,the exact element method for constructing finite element,is presented.Since the new method doesn’t need variational principle,it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficients.By this method,a triangle noncompatible element with15 degrees of freedom is derived to solve the bending of nonhomogenous Reissner’s plate.Because the displacement parameters at the nodal point only contain deflection and rotation angle.it is convenient to deal with arbitrary boundary conditions.In this paper,the convergence of displacement and stress resultants is proved.The element obtained by the present method can be used for thin and thick plates as well,Four numerical examples are given at the end of this paper,which indicates that we can obtain satisfactory results and have higher numerical precision.  相似文献   

9.
This paper describes the extension of a purely two-dimensional finite element method for the calculation of transonic turbomachinery blade-to-blade flows to include the quasi-three-dimensional terms. These terms account for the effect of variations in streamline radius, stream-tube height and blade rotation. By approximating the stream surface as a piecewise linear function, then using a local developed cone transformation on an element basis, the finite element equations are shown to remain of the same form as the two-dimensional equations. The numerical results presented demonstrate that the stream-tube height, streamline radius and blade rotation terms must be included if the prediction of the Mach number distribution around a gas turbine blade is to be calculated correctly.  相似文献   

10.
In this paper, the finite element method with new spherical Hankel shape functions is developed for simulating 2‐dimensional incompressible viscous fluid problems. In order to approximate the hydrodynamic variables, the finite element method based on new shape functions is reformulated. The governing equations are the Navier‐Stokes equations solved by the finite element method with the classic Lagrange and spherical Hankel shape functions. The new shape functions are derived using the first and second kinds of Bessel functions. In addition, these functions have properties such as piecewise continuity. For the enrichment of Hankel radial basis functions, polynomial terms are added to the functional expansion that only employs spherical Hankel radial basis functions in the approximation. In addition, the participation of spherical Bessel function fields has enhanced the robustness and efficiency of the interpolation. To demonstrate the efficiency and accuracy of these shape functions, 4 benchmark tests in fluid mechanics are considered. Then, the present model results are compared with the classic finite element results and available analytical and numerical solutions. The results show that the proposed method, even with less number of elements, is more accurate than the classic finite element method.  相似文献   

11.
An approach for the numerical solution of flow problems based on the concept of fundamental solutions of differential equations is described. This approach uses the finite element methodology but does not rely on the concept of variational principle or that of residuals. The approach is shown to be well-suited for many types of flow problems. Various applications of this approach are discussed in this paper, with particular emphasis placed on the solution of potential flows and viscous flows containing appreciable regions of separation.  相似文献   

12.
The present paper makes use of a wave equation formulation of the primitive shallow water equations to simulate one-dimensional free surface flow. A numerical formulation of the boundary element method is then developed to solve the wave continuity equation using a time-dependent fundamental solution, while an explicit finite difference scheme is used to derive velocities from the primitive momentum equation. One-dimensional free surface flows in open channels are treated and the results compared with analytical and numerical solutions. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
功能梯度材料板件三维分析的半解析梯度有限元法   总被引:1,自引:0,他引:1  
将半解析有限元与梯度有限元相结合,形成一种半解析梯度有限元来求解功能梯度材料板件问题。该方法兼有有限元法的适应性强、程序统一,半解析有限元法的节省单元与计算工作量,梯度有限元法的适应构件内部材料性能任意梯度分布等特点,并实现用一维数值计算给出构件三维分析结果。算例分析表明了方法的精度、功能与上述特点,充分揭示了功能梯度材料板件力学响应的三维形态。半解析梯度有限元法可推广应用到其他功能梯度材料面结构的各类分析中。  相似文献   

14.
ABSTRACT

Application of the Galerkin method to various fluid and structural mechanics problems that are governed by a single linear or nonlinear differential equation is well known [1-5]. Recently, the method has been extended to finite element formulations [6-10], In this paper the suitability of the Galerkin method for solution of large deflection problems of plates is studied. The method is first applied to investigate large deflection behavior of clamped isotropic plates on elastic foundations. After validity of the method is established, it is then extended to analyze problems of large deflection of clamped skew sandwich plates, both with and without elastic foundations. The plates are considered to be subjected to uniformly distributed loads. The governing differential equations for the sandwich plate in terms of displacements in Cartesian coordinates are first established and then transformed into skew coordinates. The nonlinear differential equations of the plates are then transformed into nonlinear algebraic equations, using the Galerkin method. These equations are solved using a Newton-Raphson iterative procedure. The parameters considered herein for large deflection behavior of skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle, shearing stiffnesses of the core, and foundation moduli. Numerical results are presented for skew sandwich plates for various skew angles and aspect ratios. Simplicity and quick convergence are the advantages of the method, in comparison with other much more laborious numerical methods that require extensive computer facilities.  相似文献   

15.
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen–Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tomé and McKee [32]; Tomé et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution.  相似文献   

16.
柴国钟  洪起超 《力学学报》1999,31(4):498-503
鉴于用通常的数值方法分析三维蠕变裂纹问题的困难,提出了一个三维表面裂纹蠕变断裂力学参量分析的蠕变线弹簧模型方法,并在非稳态蠕变条件下的位移、裂纹尖端J积分和C积分的工程估算公式及弹塑性线弹簧模型的基础上,建立了蠕变线弹簧模型方法的有关基本方程.具体分析计算了受均匀拉伸表面裂纹平板的J积分和C积分,并与三维有限元解进行了比较,其结果吻合良好.研究结果为进一步研究三维表面裂纹的蠕变扩展及寿命预报提供了基础.  相似文献   

17.
An efficient method is developed to investigate the vibration and stability of moving plates immersed in fluid by applying the Kirchhoff plate theory and finite element method.The fluid is considered as an ideal fluid and is described with Bernoulli’s equation and the linear potential flow theory.Hamilton’s principle is used to acquire the dynamic equations of the immersed moving plate.The mass matrix,stiffness matrix,and gyroscopic inertia matrix are determined by the exact analytical integration.The numerical results show that the fundamental natural frequency of the submersed moving plates gradually decreases to zero with an increase in the axial speed,and consequently,the coupling phenomenon occurs between the first-and second-order modes.It is also found that the natural frequency of the submersed moving plates reduces with an increase in the fluid density or the immersion level.Moreover,the natural frequency will drop obviously if the plate is located near the rigid wall.In addition,the developed method has been verified in comparison with available results for special cases.  相似文献   

18.
基于板的一阶剪切理论和V on-K arm an大挠度理论,分别推导了复合材料层合板和层合梁的几何非线性有限元列式,提出了含嵌入分层的复合材料加筋层合板在受压缩载荷作用下的后屈曲有限元分析方法,对在板厚方向具有不同分层位置的加筋板结构进行了有限元数值分析,研究了不同的加筋方式及筋的分布对具有分层损伤的复合材料加筋层合板的后屈曲性态的影响,所得结果对确定在压缩载荷作用下含损伤复合材料加筋层合板的剩余承载能力具有参考价值。  相似文献   

19.
弹性力学轴对称问题的有限元线法   总被引:1,自引:0,他引:1  
给出了解弹性力学空间轴对称问题的有限元线法的基本理论。该法包括了2-4条结线的等参数单元,沿结线方向的两点边值问题采用插值矩阵法解之。算例表明,本法具有良好的收敛性和较高的计算精度。  相似文献   

20.
This paper presents a numerical simulation for application of the Kalman filter finite element method. The Kalman filter is employed frequently for the solution of time series analysis including observation and system noises. Applying the Kalman filter to the finite element method, the present method is capable of the estimation in time and space directions. In this method, the matrix generated by the finite element method is applied to the state transition matrix. Using the Kalman filter finite element method, the characteristics of both the Kalman filter and the finite element method can be strengthened. In this paper, the state transition matrix is based on the shallow water equations which are approximated by the finite element method. This method can estimate the tidal current not only in time but also in space directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号