首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A finite-element method to analyze the stress–strain state and stability of thin shells with geometric imperfections is proposed. An arbitrary curvilinear finite element with vector approximation of the displacement function is used. To solve the systems of nonlinear algebraic equations by iteration methods, linearized stiffness matrices of finite elements and residual and load vectors are formed. The stress–strain state of a thin-walled shell with real geometric imperfections under surface pressure and axial compression is analyzed. The effect of geometric imperfections on the critical combination of loads is evaluated  相似文献   

2.
3.
A finite volume element method is developed for analyzing unsteady scalar reaction-diffusion problems in two dimensions. The method combines the concepts that are employed in the finite volume and the finite element method together. The finite volume method is used to discretize the unsteady reaction-diffusion equation, while the finite element method is applied to estimate the gradient quantities at cell faces. Robustness and efficiency of the combined method have been evaluated on uniform rectangular grids by using available numerical solutions of the two-dimensional reaction-diffusion problems. The numerical solutions demonstrate that the combined method is stable and can provide accurate solution without spurious oscillation along the high-gradient boundary layers.  相似文献   

4.
The results of a study of the feasibility of magnetic pulse welding of flat conductors are given. Various inductor circuits and sheet configurations are investigated experimentally. An optimized inductor circuit for accelerating flat conductors by a magnetic field is presented and the necessary diagnostic equipment is developed. Results of experiments on the acceleration of flat conductors and production of aluminum-aluminum and aluminum-steel welded joints are presented. The characteristics of the welds are investigated.  相似文献   

5.
带铁磁薄膜悬臂板的磁场微感应器磁弹性特征研究   总被引:3,自引:3,他引:0  
对于在可变形非磁材料悬臂梁式板单表面粘贴可磁化材料薄膜所构成的磁场微传感器件结构,研究了其处在磁场环境中的磁弹性弯曲变形的磁场-力学特征。为此,建立了由有限元方法分析磁场与有限差分法计算挠曲变形相结合来计算其结构在磁场中产生磁弹性变形的定量分析程序。在此基础上,对于这一微传感结构的算例给出了其结构变形随外加磁场环境变化的磁场-挠度特征关系等定量结果。结果表明:微传感器件不仅可以测量出磁场的大小,而且给出了测量磁场矢量方向的可能性。  相似文献   

6.
7.
8.
Failure behavior of composite materials in general and particulate composites in particular is intimately linked to interactions between a matrix crack and a second phase inclusion. In this work, surface deformations are optically mapped in the vicinity of a crack–inclusion pair using moiré interferometry. Edge cracked epoxy beams, each with a symmetrically positioned cylindrical glass inclusion ahead of the tip, are used to simulate a compliant matrix crack interacting with a stiff inclusion. Processes involving microelectronic fabrication techniques are developed for creating linear gratings in the crack–inclusion vicinity. The debond evolution between the inclusion–matrix pair is successfully mapped by recording crack opening displacements under quasi-static loading conditions. The surface deformations are analyzed to study evolution of strain fields due to crack–inclusion interactions. A numerical model based on experimental observations is also developed to simulate debonding of the inclusion from the matrix. An element stiffness deactivation method in conjunction with critical radial stress criterion is successfully demonstrated using finite element method. The proposed methodology is shown to capture the experimentally observed debonding process well.
H. V. TippurEmail:
  相似文献   

9.
In order to conveniently develop C0 continuous element for the accurate analysis of laminated composite and sandwich plates with general configurations, this paper develops a C0-type zig–zag theory in which the interlaminar continuity of transverse shear stresses is a priori satisfied and the number of unknowns is independent of the number of layers. The present theory is applicable not only to the cross-ply but also to the angle-ply laminated composite and sandwich plates. On the premise of retaining the merit of previous zig–zag theories, the derivatives of transverse displacement have been taken out from the displacement fields. Therefore, based on the proposed zig–zag theory, it is very easy to construct the C0 continuous element. To assess the performance of the proposed model, the classical quadratic six-node triangular element with seven degrees of freedom at each node is presented for the static analysis of laminated composite and sandwich plates. The typical examples are taken into account to assess the performance of finite element based on the proposed zig–zag theory by comparing the present results with the three-dimensional elasticity solutions. Numerical results show that the present model can produce the more accurate deformations and stresses compared with the previous zig–zag theories.  相似文献   

10.
This paper presents an extension of the numerical reduction method, which has been proposed in Lejeunes et al. (Arch Appl Mech, 76:311–326, 2006), for modeling curved laminated structures of revolution such as for instance rubber bearings. This method based on high-order finite elements is developed in the context of nearly incompressible hyperelastic behavior. The displacement is approximated with a sum of independent functions, leading to a separation of variables. Therefore, a one-dimensional finite element can be formulated, which represents a 3-dimensional solid in a general loading case. Comparisons with classical finite element models are provided and show the reliability of this model reduction. An important decrease in the model size and a greatly reduced computing time, compared to standard models, is observed.  相似文献   

11.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

12.
We present a new finite element – finite volume (FEFV) method combined with a realistic equation of state for NaCl–H2O to model fluid convection driven by temperature and salinity gradients. This method can deal with the nonlinear variations in fluid properties, separation of a saline fluid into a high-density, high-salinity brine phase and low-density, low-salinity vapor phase well above the critical point of pure H2O, and geometrically complex geological structures. Similar to the well-known implicit pressure explicit saturation formulation, this approach decouples the governing equations. We formulate a fluid pressure equation that is solved using an implicit finite element method. We derive the fluid velocities from the updated pressure field and employ them in a higher-order, mass conserving finite volume formulation to solve hyperbolic parts of the conservation laws. The parabolic parts are solved by finite element methods. This FEFV method provides for geometric flexibility and numerical efficiency. The equation of state for NaCl–H2O is valid from 0 to 750°C, 0 to 4000 bar, and 0–100 wt.% NaCl. This allows the simulation of thermohaline convection in high-temperature and high-pressure environments, such as continental or oceanic hydrothermal systems where phase separation is common.  相似文献   

13.
A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff-Love hypotheses is considered. Strain relations, which adequately describe the deformation of the element with finite bending of its middle surface, are obtained by integrating the differential equation of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is developed for calculating the coefficients of the first and second variations of the strain energy, which are used to formulate the conditions of equilibrium and stability of the discrete model of the shell. Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear deformation of elastic plates and shells. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 160–172, September–October, 2007.  相似文献   

14.
In this paper, the magnetic-elastic-plastic deformation behavior is studied for a ferromagnetic plate with simple supports. The perturbation formula of magnetic force is first derived based on the perturbation technique, and is then applied to the analysis of deformation characteristics with emphasis laid on the analyses of modes, symmetry of deformation and influences of incident angle of applied magnetic field on the plate deformation. The theoretical analyses offer explanations why the configuration offer- romagnetic rectangular plate with simple supports under an oblique magnetic field is in-wavy type along the x-direction, and why the largest deformation of the ferromagnetic plate occurs at the incident angle of 45°for the magnetic field. A numerical code based on the finite element method is developed to simulate quantitatively behaviors of the nonlinearly coupled multi-field problem. Some characteristic curves are plotted to illustrate the magneto--elastic-plastic deflections, and to reveal how the deflections can be influenced by the incident angle of applied magnetic field. The deformation characteristics obtained from the numerical simulations are found in good agreement with the theoretical analyses.  相似文献   

15.
Summary  A numerical procedure is proposed for the analysis of free vibrations of pretwisted thin plates. An accurate strain–displacement relationship based on the thin-shell theory combined with the finite element method using triangular plate elements with three nodes and nine degrees of freedom for each node is utilized. The vibration characteristics of pretwisted thin plates with different twist rates and aspect ratios are studied. The numerical results are compared with the previous results obtained by various types of finite elements and by the Rayleigh–Ritz method. The effect of the twist rate on the vibration characteristics is studied briefly. Received 28 February 2001; accepted for publication 18 December 2001  相似文献   

16.
Based on Timoshenko's beam theory and Vlasov's thin-walled member theory, a new model of spatial thin-walled beam element is developed for analyzing geometrical and physical nonlinearity, which incorporates an interior node and independent interpolations of bending angles and warp and takes diversified factors into consideration, such as traverse shear deformation, torsional shear deformation and their coupling, coupling of flexure and torsion, and the second shear stress. The geometrical nonlinear strain is formulated in updated Lagarange (UL) and the corresponding stiffness matrix is derived. The perfectly plastic model is used to account for physical nonlinearity, and the yield rule of von Mises and incremental relationship of Prandtle-Reuss are adopted. Elastoplastic stiffness matrix is obtained by numerical integration based on the finite segment method, and a finite element program is compiled. Numerical examples manifest that the proposed model is accurate and feasible in the analysis of thin-walled structures.  相似文献   

17.
为了更好地模拟复合材料及含夹杂非均质材料等的宏观弹塑性力学性能,简化有限元建模时间和减少有限元模拟计算量。本文基于参变量变分原理,提出了一种采用任意多边形弹塑性单元进行结构非线性分析的参数二次规划算法,给出了参变量最小势能原理以及最终的二次规划模型,并在有限元分析与优化设计软件系统JIFEX上进行了程序实现。数值算例证明了本文方法的正确与可行性。  相似文献   

18.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we constructed the equations of generalized magneto-thermoelasticity in a perfectly conducting medium. The formulation is applied to generalizations, the Lord–Shulman theory with one relaxation time, and the Green–Lindsay theory with two relaxation times, as well as to the coupled theory. The material of the cylinder is supposed to be nonhomogeneous isotropic both mechanically and thermally. The problem has been solved numerically using a finite element method. Numerical results for the temperature distribution, displacement, radial stress, and hoop stress are represented graphically. The results indicate that the effects of nonhomogeneity, magnetic field, and thermal relaxation times are very pronounced. In the absence of the magnetic field or relaxation times, our results reduce to those of generalized thermoelasticity and/or classical dynamical thermoelasticity, respectively. Results carried out in this paper can be used to design various nonhomogeneous magneto-thermoelastic elements under magnetothermal load to meet special engineering requirements. An erratum to this article can be found at  相似文献   

20.
We develop the Cartan-Monge geometric approach to the characteristic method for nonlinear partial differential equations of the first and higher orders. The Hamiltonian structure of characteristic vector fields related with nonlinear partial differential equations of the first order is analyzed, and tensor fields of special structure are constructed for defining characteristic vector fields naturally related with nonlinear partial differential equations of higher orders. Published in Neliniini Kolyvannya, Vol. 10, No. 1, pp. 26–36, January–March, 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号