首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new adaptive quadtree method for simulating laminar viscous fluid problems with free surfaces and interfaces is presented in this paper. The Navier–Stokes equations are solved with a SIMPLE‐type scheme coupled with the Compressive Interface Capturing Scheme for Arbitrary Meshes (CICSAM) (Numerical prediction of two fluid systems with sharp interfaces, Ph.D. Thesis, Imperial College of Science, Technology and Medicine, London, 1997) volume of fluid (VoF) method and PLIC reconstruction of the volume fraction field during refinement and derefinement processes. The method is demonstrated for interface advection cases in translating and shearing flow fields and found to provide high interface resolution at low computational cost. The new method is also applied to simulation of the collapse of a water column and the results are in excellent agreement with other published data. The quadtree grids adapt to follow the movement of the free surface, whilst maintaining a band of the smallest cells surrounding the surface. The calculation is made on uniform and adapting quadtree grids and the accuracy of the quadtree calculation is shown to be the same as that made on the equivalent uniform grid. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A methodology is proposed for the calculation of the truncation error of finite volume discretizations of the incompressible Navier–Stokes equations on colocated grids. The truncation error is estimated by restricting the solution obtained on a given grid to a coarser grid and calculating the image of the discrete Navier–Stokes operator of the coarse grid on the restricted velocity and pressure field. The proposed methodology is not a new concept but its application to colocated finite volume discretizations of the incompressible Navier–Stokes equations is made possible by the introduction of a variant of the momentum interpolation technique for mass fluxes where the pressure part of the mass fluxes is not dependent on the coefficients of the linearized momentum equations. The theory presented is supported by a number of numerical experiments. The methodology is developed for two‐dimensional flows, but extension to three‐dimensional cases should not pose problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
Viscous waves and waves over a submerged cylinder in a stationary tank are simulated using a volume-of-fluid numerical scheme on adaptive hierarchical grids. A high resolution interface-capturing method is used to advect the free surface interface and the Navier–Stokes equations are discretised using finite volumes with collocated primitive variables and solved using a Pressure Implicit with Splitting of Operators (PISO) algorithm. The cylinder is modelled by using the technique of Cartesian cut cells. Results of flow of a single fluid past a cylinder at Reynolds number Re=100 are presented and found to agree well with experimental and other numerical data. Viscous free surface waves in a tank are simulated using uniform and quadtree grids for Reynolds numbers in the range from 2 to 2000, and the results compared against analytical solutions where available. The quadtree-based results are of the same accuracy as those on the equivalent uniform grids, and retain a sharp interface at the free surface while leading to considerable savings in both storage and CPU requirements. The nonlinearity in the wave is investigated for a selection of initial wave amplitudes. A submerged cylinder is positioned in the tank and its influence on the waves as well as the hydrodynamic loading on the cylinder is investigated.  相似文献   

4.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd.  相似文献   

5.
A fourth‐order finite‐volume method for solving the Navier–Stokes equations on a mapped grid with adaptive mesh refinement is proposed, implemented, and demonstrated for the prediction of unsteady compressible viscous flows. The method employs fourth‐order quadrature rules for evaluating face‐averaged fluxes. Our approach is freestream preserving, guaranteed by the way of computing the averages of the metric terms on the faces of cells. The standard Runge–Kutta marching method is used for time discretization. Solutions of a smooth flow are obtained in order to verify that the method is formally fourth‐order accurate when applying the nonlinear viscous operators on mapped grids. Solutions of a shock tube problem are obtained to demonstrate the effectiveness of adaptive mesh refinement in resolving discontinuities. A Mach reflection problem is solved to demonstrate the mapped algorithm on a non‐rectangular physical domain. The simulation is compared against experimental results. Future work will consider mapped multiblock grids for practical engineering geometries. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
The volume of fluid (VOF) method is used to perform two‐phase simulations (gas–liquid). The governing Navier–Stokes conservation equations of the flow field are numerically solved on two‐dimensional axisymmetric or three‐dimensional unstructured grids, using Cartesian velocity components, following the finite volume approximation and a pressure correction method. A new method of adaptive grid local refinement is developed in order to enhance the accuracy of the predictions, to capture the sharp gas–liquid interface and to speed up the calculations. Results are compared with experimental measurements in order to assess the efficiency of the method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
Two methods for coupling the Reynolds‐averaged Navier–Stokes equations with the qω turbulence model equations on structured grid systems have been studied; namely a loosely coupled method and a strongly coupled method. The loosely coupled method first solves the Navier–Stokes equations with the turbulent viscosity fixed. In a subsequent step, the turbulence model equations are solved with all flow quantities fixed. On the other hand, the strongly coupled method solves the Reynolds‐averaged Navier–Stokes equations and the turbulence model equations simultaneously. In this paper, numerical stabilities of both methods in conjunction with the approximated factorization‐alternative direction implicit method are analysed. The effect of the turbulent kinetic energy terms in the governing equations on the convergence characteristics is also studied. The performance of the two methods is compared for several two‐ and three‐dimensional problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
A robust aspect ratio‐based agglomeration algorithm to generate high quality of coarse grids for unstructured and hybrid grids is proposed in this paper. The algorithm focuses on multigrid techniques for the numerical solution of Euler and Navier–Stokes equations, which conform to cell‐centered finite volume special discretization scheme, combines vertex‐based isotropic agglomeration and cell‐based directional agglomeration to yield large increases in convergence rates. Aspect ratio is used as fusing weight to capture the degree of cell convexity and give an indication of cell stretching. Agglomeration front queue is established to propagate inward from the boundaries, which stores isotropic vertex and also high‐stretched cell marked with different flag according to aspect ratio. We conduct the present method to solve Euler and Navier–Stokes equations on unstructured and hybrid grids and compare the results with single grid as well as MGridGen, which shows that the present method is efficient in reducing computational time for large‐scale system equations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Presently, improving the accuracy and reducing computational costs are still two major CFD objectives often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive mesh refinement method in order to integrate the 3D Euler and Navier–Stokes equations on structured meshes, where a local multigrid method is used to accelerate convergence for steady compressible flows. The time integration method is a LU‐SGS method (AIAA J 1988; 26: 1025–1026) associated with a spatial Jameson‐type scheme (Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA Paper, 81‐1259, 1981). Computations of turbulent flows are handled by the standard k–ω model of Wilcox (AIAA J 1994; 32: 247–255). A coarse grid correction, based on composite residuals, has been devised in order to enforce the coupling between the different grid levels and to accelerate the convergence. The efficiency of the method is evaluated on standard 2D and 3D aerodynamic configurations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical calculations of the 2‐D steady incompressible driven cavity flow are presented. The Navier–Stokes equations in streamfunction and vorticity formulation are solved numerically using a fine uniform grid mesh of 601 × 601. The steady driven cavity flow solutions are computed for Re ? 21 000 with a maximum absolute residuals of the governing equations that were less than 10?10. A new quaternary vortex at the bottom left corner and a new tertiary vortex at the top left corner of the cavity are observed in the flow field as the Reynolds number increases. Detailed results are presented and comparisons are made with benchmark solutions found in the literature. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The second of a two‐paper series, this paper details a solver for the characteristics‐bias system from the acoustics–convection upstream resolution algorithm for the Euler and Navier–Stokes equations. An integral formulation leads to several surface integrals that allow effective enforcement of boundary conditions. Also presented is a new multi‐dimensional procedure to enforce a pressure boundary condition at a subsonic outlet, a procedure that remains accurate and stable. A classical finite element Galerkin discretization of the integral formulation on any prescribed grid directly yields an optimal discretely conservative upstream approximation for the Euler and Navier–Stokes equations, an approximation that remains multi‐dimensional independently of the orientation of the reference axes and computational cells. The time‐dependent discrete equations are then integrated in time via an implicit Runge–Kutta procedure that in this paper is proven to remain absolutely non‐linearly stable for the spatially‐discrete Euler and Navier–Stokes equations and shown to converge rapidly to steady states, with maximum Courant number exceeding 100 for the linearized version. Even on relatively coarse grids, the acoustics–convection upstream resolution algorithm generates essentially non‐oscillatory solutions for subsonic, transonic and supersonic flows, encompassing oblique‐ and interacting‐shock fields that converge within 40 time steps and reflect reference exact solutions. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, we present a method to predict the droplet ejection in thermal inkjet printheads including the growth and collapse of a vapor bubble and refill of the firing chamber. The three‐dimensional Navier–Stokes equations are solved using a finite‐volume approach with a fixed Cartesian mesh. The piecewise‐linear interface calculation‐based volume‐of‐fluid method is employed to track and reconstruct the ink–air interface. A geometrical computation based on Lagrangian advection is used to compute the mass flux and advance the interface. A simple and efficient model for the bubble dynamics is employed to model the effect of ink vapor on the adjacent ink liquid. To solve the surface tension‐dominated flow accurately, a hierarchical curvature‐estimation method is proposed to adapt to the local grid resolution. The numerical methods mentioned earlier have been implemented in an internal simulation code, CFD3. The numerical examples presented in the study show good performance of CFD3 in prediction of surface tension‐dominated free‐surface flows, for example, droplet ejection in thermal inkjet printing. Currently, CFD3 is used extensively for printhead development within Hewlett‐Packard. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
A new numerical method that couples the incompressible Navier–Stokes equations with the global mass correction level‐set method for simulating fluid problems with free surfaces and interfaces is presented in this paper. The finite volume method is used to discretize Navier–Stokes equations with the two‐step projection method on a staggered Cartesian grid. The free‐surface flow problem is solved on a fixed grid in which the free surface is captured by the zero level set. Mass conservation is improved significantly by applying a global mass correction scheme, in a novel combination with third‐order essentially non‐oscillatory schemes and a five stage Runge–Kutta method, to accomplish advection and re‐distancing of the level‐set function. The coupled solver is applied to simulate interface change and flow field in four benchmark test cases: (1) shear flow; (2) dam break; (3) travelling and reflection of solitary wave and (4) solitary wave over a submerged object. The computational results are in excellent agreement with theoretical predictions, experimental data and previous numerical simulations using a RANS‐VOF method. The simulations reveal some interesting free‐surface phenomena such as the free‐surface vortices, air entrapment and wave deformation over a submerged object. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
An Eulerian–Lagrangian approach is developed for the simulation of turbulent bubbly flows in complex systems. The liquid phase is treated as a continuum and the Navier–Stokes equations are solved in an unstructured grid, finite volume framework for turbulent flows. The dynamics of the disperse phase is modeled in a Lagrangian frame and includes models for the motion of each individual bubble, bubble size variations due to the local pressure changes, and interactions among the bubbles and with boundaries. The bubble growth/collapse is modeled by the Rayleigh–Plesset (RP) equation. Three modeling approaches are considered: (a) one‐way coupling, where the influence of the bubble on the fluid flow is neglected, (b) two‐way coupling, where the momentum‐exchange between the fluid and the bubbles is modeled, and (c) volumetric coupling, where the volumetric displacement of the fluid by the bubble motion and the momentum‐exchange are modeled. A novel adaptive time‐stepping scheme based on stability‐analysis of the non‐linear bubble dynamics equations is developed. The numerical approach is verified for various single bubble test cases to show second‐order accuracy. Interactions of multiple bubbles with vortical flows are simulated to study the effectiveness of the volumetric coupling approach in predicting the flow features observed experimentally. Finally, the numerical approach is used to perform a large‐eddy simulation in two configurations: (i) flow over a cavity to predict small‐scale cavitation and inception and (ii) a rising dense bubble plume in a stationary water column. The results show good predictive capability of the numerical algorithm in capturing complex flow features. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
The coupling between the equations governing the free‐surface flows, the six degrees of freedom non‐linear rigid body dynamics, the linear elasticity equations for mesh‐moving and the cables has resulted in a fluid‐structure interaction technology capable of simulating mooring forces on floating objects. The finite element solution strategy is based on a combination approach derived from fixed‐mesh and moving‐mesh techniques. Here, the free‐surface flow simulations are based on the Navier–Stokes equations written for two incompressible fluids where the impact of one fluid on the other one is extremely small. An interface function with two distinct values is used to locate the position of the free‐surface. The stabilized finite element formulations are written and integrated in an arbitrary Lagrangian–Eulerian domain. This allows us to handle the motion of the time dependent geometries. Forces and momentums exerted on the floating object by both water and hawsers are calculated and used to update the position of the floating object in time. In the mesh moving scheme, we assume that the computational domain is made of elastic materials. The linear elasticity equations are solved to obtain the displacements for each computational node. The non‐linear rigid body dynamics equations are coupled with the governing equations of fluid flow and are solved simultaneously to update the position of the floating object. The numerical examples includes a 3D simulation of water waves impacting on a moored floating box and a model boat and simulation of floating object under water constrained with a cable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
In a previous work (Int. J. Numer. Meth. Fluids 2007; 55 :867–897), we presented a two‐phase level set method to simulate air/water turbulent flows using curvilinear body‐fitted grids for ship hydrodynamics problems. This two‐phase level set method explicitly enforces jump conditions across the interface, thus resulting in a fully coupled representation of the air/water flow. Though the method works well with multiblock curvilinear grids, severe robustness problems were found when attempting to use it with overset grids. The problem was tracked to small unphysical level set discontinuities across the overset grids with large differences in curvature. Though negligible for single‐phase approaches, the problem magnifies with large density differences between the phases, causing computation failures. In this paper, we present a geometry‐based level set method for curvilinear overset grids that overcomes these difficulties. The level set transport and reinitialization equations are not discretized along grid coordinates, but along the upwind streamline and level set gradient directions, respectively. The method is essentially an unstructured approach that is transparent to the differences between overset grids, but still the discretization is under the framework of a finite differences approach. As a result, significant improvements in robustness and to a less extent in accuracy are achieved for the level set function interpolation between overset grids, especially with big differences in grid curvature. Example tests are shown for the case of bow breaking waves around the surface combatant model David Taylor Model Basin (DTMB) 5415 and for the steady‐state ONR Tumblehome DTMB 5613 with superstructure. In the first case, the results are compared against experimental data available and in the second against results of a semi‐coupled method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
采用混合网格求解紊流Navier Stokes方程。在物面附近采用柱状网格 ,其他区域则采用完全非结构网格。方程的求解采用Jamson的有限体积法 ,紊流模型采用两层Baldwin Lomax代数紊流模型。用各向异性多重网格法来加速解的收敛。数值算例表明 ,用混合网格及各向异性多重网格求解紊流流动是非常有效的  相似文献   

20.
This paper presents a numerical method for solving the two‐dimensional unsteady incompressible Navier–Stokes equations in a vorticity–velocity formulation. The method is applicable for simulating the nonlinear wave interaction in a two‐dimensional boundary layer flow. It is based on combined compact difference schemes of up to 12th order for discretization of the spatial derivatives on equidistant grids and a fourth‐order five‐ to six‐alternating‐stage Runge–Kutta method for temporal integration. The spatial and temporal schemes are optimized together for the first derivative in a downstream direction to achieve a better spectral resolution. In this method, the dispersion and dissipation errors have been minimized to simulate physical waves accurately. At the same time, the schemes can efficiently suppress numerical grid‐mesh oscillations. The results of test calculations on coarse grids are in good agreement with the linear stability theory and comparable with other works. The accuracy and the efficiency of the current code indicate its potential to be extended to three‐dimensional cases in which full boundary layer transition happens. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号