首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Molecular dynamics simulations using Modified Embedded Atom Method (MEAM) potentials were performed to analyze material length scale influences on damage progression of single crystal nickel. Damage evolution by void growth and coalescence was simulated at very high strain rates (108–1010/s) involving four specimen sizes ranging from ≈5000 to 170,000 atoms with the same initial void volume fraction. 3D rectangular specimens with uniform thickness were provided with one and two embedded cylindrical voids and were subjected to remote uniaxial tension at a constant strain rate. Void volume fraction evolution and the corresponding stress–strain responses were monitored as the voids grew under the increasing applied tractions.The results showed that the specimen length scale changes the dislocation pattern, the evolving void aspect ratio, and the stress–strain response. At small strain levels (0–20%), a damage evolution size scale effect can be observed from the damage-strain and stress–strain curves, which is consistent with dislocation nucleation argument of Horstemeyer et al. [Horstemeyer, M.F., Baskes, M.I., Plimpton, S.J., 2001a. Length scale and time scale effects on the plastic flow of FCC metals. Acta Mater. 49, pp. 4363–4374] playing a dominant role. However, when the void volume fraction evolution is plotted versus the applied true strain at large plastic strains (>20%), minimal size scale differences were observed, even with very different dislocation patterns occurring in the specimen. At this larger strain level, the size scale differences cease to be relevant, because the effects of dislocation nucleation were overcome by dislocation interaction.This study provides fodder for bridging material length scales from the nanoscale to the larger scales by examining plasticity and damage quantities from a continuum perspective that were generated from atomistic results.  相似文献   

2.
Finite element (FE) calculations of a cylindrical cell containing a spherical hole have been performed under large strain conditions for varying triaxiality with three different constitutive models for the matrix material, i.e. rate independent plastic material with isotropic hardening, visco-plastic material under both isothermal and adiabatic conditions, and porous plastic material with a second population of voids nucleating strain controlled. The “mesoscopic” stress-strain and void growth responses of the cell are compared with predictions of the modified Gurson model in order to study the effects of varying triaxiality and strain rate on the critical void volume fraction. The interaction of two different sizes of voids was modelled by changing the strain level for nucleation and the stress triaxiality. The study confirms that the void volume fraction at void coalescence does not depend significantly on the triaxiality if the initial volume fraction of the primary voids is small and if there are no secondary voids. The strain rate does not affect fc either. The results also indicate that a single internal variable, f, is not sufficient to characterize the fracture processes in materials containing two different size-scales of void nucleating particles.  相似文献   

3.
A population of several spherical voids is included in a three-dimensional, small scale yielding model. Two distinct void growth mechanisms, put forth by [Int. J. Solids Struct. 39 (2002) 3581] for the case of a two-dimensional model containing cylindrical voids, are well contained in the model developed in this study for spherical voids. A material failure criterion, based on the occurrence of void coalescence in the unit cell model, is established. The critical ligament reduction ratio, which varies with stress triaxiality and initial porosity, is used to determine ligament failure between the crack tip and the nearest void. A comparison of crack initiation toughness of the model containing cylindrical voids with the model containing spherical voids reveals that the material having a sizeable fraction of spherical voids is tougher than the material having cylindrical voids. The proposed material failure determination method is then used to establish the fracture resistance curve (JR curve) of the material. For a ductile material containing a small volume fraction of microscopic voids initially, the void by void growth mechanism prevails, which results in a JR curve having steep slope. On the other hand, for a ductile material containing a large volume fraction of initial voids, the multiple voids interaction mechanism prevails, which results in a flat JR curve. Next, the effect of T-stress on fracture resistance is examined. Finally, nucleation and growth of secondary microvoids and their effects on void coalescence are briefly discussed.  相似文献   

4.
The size dependence of micro-toughness in ductile fracture   总被引:1,自引:0,他引:1  
Micro-toughness in ductile fracture is defined as the plastic work dissipated per unit fracture surface area in the material separation processes of void growth and coalescence. A micromechanics model for the estimation of the size dependence of micro-toughness in ductile fracture is presented. Size effects are incorporated in the model using the conventional mechanism-based strain gradient plasticity (CMSG) theory. A finite element model of an axisymmetric representative unit cell with an initial spherical void is used to validate model predictions. Two characteristic length scales emerge from the model. The initial void radius sets the scale for the initial spherical void growth. For the subsequent void coalescence, the scale is set by the width of the intervoid ligament. Energy dissipation in ductile fracture is found to be dominated by the mechanisms of coalescence, and the micro-toughness in ductile fracture is found to be size dependent for dimple sizes approximately one order of magnitude larger than the material length scale.  相似文献   

5.
The Gurson model [J. Engrg. Mater. Technol. 99 (1977) 2] has been widely used to study the deformation and failure of metallic materials containing microvoids. The void volume fraction is the only parameter representing voids since the void size does not come into play in the Gurson model. Based on the Taylor dislocation model [Proc. R. Soc. (Lond.) A145 (1934) 362; J. Int. Metals 62 (1938) 307], we extend the Gurson model to account for the void size effect. It is shown that the yield surfaces for micron- and submicron-sized voids are significantly larger than that given by the Gurson model. For a voided, dilating material subject to uniaxial tension, the void size has essentially no effect on the stress–strain curve at small initial void volume fraction. However, as the initial void volume fraction increases, the void size effect may become significant.  相似文献   

6.
The following article proposes a damage model that is implemented into a glassy, amorphous thermoplastic thermomechanical inelastic internal state variable framework. Internal state variable evolution equations are defined through thermodynamics, kinematics, and kinetics for isotropic damage arising from two different inclusion types: pores and particles. The damage arising from the particles and crazing is accounted for by three processes of damage: nucleation, growth, and coalescence. Nucleation is defined as the number density of voids/crazes with an associated internal state variable rate equation and is a function of stress state, molecular weight, fracture toughness, particle size, particle volume fraction, temperature, and strain rate. The damage growth is based upon a single void growing as an internal state variable rate equation that is a function of stress state, rate sensitivity, and strain rate. The coalescence internal state variable rate equation is an interactive term between voids and crazes and is a function of the nearest neighbor distance of voids/crazes and size of voids/crazes, temperature, and strain rate. The damage arising from the pre-existing voids employs the Cocks–Ashby void growth rule. The total damage progression is a summation of the damage volume fraction arising from particles and pores and subsequent crazing. The modeling results compare well to experimental findings garnered from the literature. Finally, this formulation can be readily implemented into a finite element analysis.  相似文献   

7.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional adjustment.  相似文献   

8.
9.
魏悦广 《力学学报》2000,32(3):291-299
裂纹在韧性材料中扩展时,将们随着微孔洞的萌生和生长,孔洞的萌生和深化将直接影响着材料的总体断裂韧性和强度,以往的研究主要集中在将裂纹的扩展刻划为微孔洞的萌生、生长和汇合这样一个过程。从传统的断裂过程区模型出发研究微孔洞的萌生和生长对材料总体断裂韧性的影响,通过采用Gurson模型,建立塑性增量本构关系,然后针对定常扩展情况直接进行分析,孔洞对材料断裂韧性的影响由本构关系刻划,而在孔洞汇合模型中,上  相似文献   

10.
We present micromechanical finite element results that quantify coalescence effects based upon temperature and different spatial arrangements of voids. We propose a critical intervoid ligament distance (ILD) to define void coalescence that is derived from micromechanical simulations in which void volume fraction evolves as a function of strain. Several parameters were varied using the temperature and strain rate internal variable plasticity model of Bammann–Chiesa–Johnson to determine the coalescence effects. The parameters include two types of materials with different work hardening rates (304L stainless steel and 6061T6 aluminum), three different temperatures (298, 400, and 600 K), several boundary conditions (force and displacement: uniaxial, plane strain, and biaxial), type of element used (plane strain and axisymmetric), different ILDs, and the number of voids (one and two void configurations). The present study provides a basis for macroscale modeling of coalescence which is briefly discussed.  相似文献   

11.
The effect of void size on void growth in single crystals with uniformly distributed cylindrical voids is studied numerically using a finite deformation strain gradient crystal plasticity theory with an intrinsic length parameter. A plane strain cell model is analyzed for a single crystal with three in-plane slip systems. It is observed that small voids allow much larger overall stress levels than larger voids for all the stress triaxialities considered. The amount of void growth is found to be suppressed for smaller voids at low stress triaxialities. Significant differences are observed in the distribution of slips and on the shape of the deformed voids for different void sizes. Furthermore, the orientation of the crystalline lattice is found to have a pronounced effect on the results, especially for the smaller void sizes.  相似文献   

12.
李晓红  张克实 《实验力学》2002,17(3):320-325
选用具有典型细观结构特征的球墨铸铁材料进行试验,探讨这种金属材料在各种三轴应力状态下的细观损伤破坏,结果表明:在较高三轴应力状态时,石墨颗粒与基体分离形成的一级孔洞扩展很不充分,且断裂孔洞体积分数ff较小;在较低三轴应力状态下,一级孔洞扩展较充分,损伤演化后期有二级孔洞形成,体积分数ff较大,ff的较大差异意味着材料在不同受力情况下,细观层面上表现出损伤聚合机制不同,因此用单参数f来描述和判断球铁材料损伤演化的各个物理状态是不够的。  相似文献   

13.
考虑三轴约束时孔洞的聚合机理及有效能量准则   总被引:10,自引:0,他引:10  
李振环  匡震邦 《力学学报》2000,32(4):428-438
通过体胞分析方法,对不同状孔洞在从光滑试样到裂纹试样的三轴应力场中的聚合机理进行了较精解的有限元分析,计算结果表明:(1)孔洞的相互靠近和横向扩展是导致相邻孔洞发生内颈缩聚合的两种基本机制,在应力三维度Rσ等于1.25附近,这两种机制发生较明显的变化。(2)单纯以孔洞体积分数fC概念为基础的材料破坏参数一般敏感于应力三维度,不能很好地预报不同三轴应力场中材料的破坏,在此基础上,提出了描述孔洞聚合的  相似文献   

14.
One of the low-temperature failure mechanisms in ductile metallic alloys is the growth of voids and their coalescence. In the present work we attempt to obtain atomistic insights into the mechanisms underpinning cavitation in a representative metal, namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a rich size-dependent behavior across various material length scales. We focus on these two issues in this paper through large-scale calculations on specimens of sizes ranging from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation propagation based void growth mechanism we highlight the observed length scale effect reflected in the effective stress-strain response, stress triaxiality and void fraction evolution. Furthermore, as expected, the conventionally used Gurson's model fails to capture the observed size-effects calling for a mechanistic modification that incorporates the mechanisms observed in our (and other researchers') simulation. Finally, in our multi-void simulations, we find that, the splitting of a big void into a distribution of small ones increases the load-carrying capacity of specimens. However, no obvious dependence of the void fraction evolution on void coalescence is observed.  相似文献   

15.
This work presents the response of a porous energetic material subjected to severe transient loading conditions. The porosities, represented by voids, entirely change the response of an otherwise homogeneous material. The variations in terms of energy distribution and maximum temperature reached in the material in the presence of heterogeneities (voids) but in the absence of chemical reactions are studied. This study also accounts for void–void interactions to enhance the understanding of the localization of energy in the material. It is observed that relative position of voids can have important consequence on energy distribution as well as rise in temperature of the energetic material. The relative position of voids further influences the interaction of secondary shock waves generated during the collapse of one void with the downstream voids. This interaction can either enhance or diminish the strength of the shock depending on the location of downstream voids. This work also reveals that the findings from mutual void–void interactions can be used to study systems with multiple voids. This is shown by analyzing systems with 10–25 % void volume fraction. The effect of void–void interactions are connected to the overall response of a chemically inert porous material to imposed transient loads.  相似文献   

16.
In the present paper, axisymmetric cell models containing one or two voids and athree-dimensional cell model containing two voids have been used to investigate void size andspacing effect on the ductile fracture in materials with high initial void volume fraction. They areperformed for round smooth and round notched specimens under uniaxial tension. The examplematerial used for comparison is a nodular cast iron material GGG-40 with initial void volumefraction of 7.7%. The parameters considered in this paper are void size and shape foraxisymmetric cell models containing a single void, and void distribution pattern foraxisymmetric and 3D cell models containing two voids of different sizes. The results obtainedfrom these cell models by using FEM calculations are compared with the Gurson model, theGurson–Tvergaard–Needleman model, the Rice–Tracey model and the modified Rice–Traceymodel. It can be stated that the influence of void size and void spacing on the growth in volumeof voids is very large, and it is dependent on the distribution of voids. Using non-uniform voiddistribution, the results of axisymmetric cell models can explain how a void can grow in anunstable state under very low stress triaxiality at very small strain as observed in experiments.Calculations using cell models containing two voids give very different results about the stableand unstable growth of voids which are strongly dependent on the configuration of cell model.  相似文献   

17.
Void growth and coalescence in fcc single crystals were studied using crystal plasticity under uniaxial and biaxial loading conditions and various orientations of the crystalline lattice. A 2D plane strain unit cell with one and two cylindrical voids was employed using three-dimensional 12 potentially active slip systems. The results were compared to five representative orientations of the tensile axis on the stereographic triangle. For uniaxial tension conditions, the void volume fraction increase under the applied load is strongly dependent on the crystallographic orientation with respect to the tensile axis. For some orientations of the tensile axis, such as [1 0 0] or [1 1 0], the voids exhibited a growth rate twice as fast compared with other orientations ([1 0 0], [2 1 1]). Void growth and coalescence simulations under uniaxial loading indicated that during deformation along some orientations with asymmetry of the slip systems, the voids experienced rotation and shape distortion, due mainly to lattice reorientation. Coalescence effects are shown to diminish the influence of lattice orientation on the void volume fraction increase, but noteworthy differences are still present. Under biaxial loading conditions, practically all differences in the void volume fraction for different orientations of the tensile axes during void growth vanish. These results lead to the conclusion that at microstructural length scales in regions under intense biaxiality/triaxiality conditions, such as crack tip or notched regions, the plastic anisotropy due to the initial lattice orientation has only a minor role in influencing the void growth rate. In such situations, void growth and coalescence are mainly determined by the stress triaxiality, the magnitude of accumulated strain, and the spatial localization of such plastic strains.  相似文献   

18.
This article presents and evaluates experiments for the characterization and modeling of damage of structural aluminum and aluminum–magnesium alloys. Tensile tests were performed for specimens with artificial defects (voids) represented by different arrangements of pre-drilled micro-holes. The corresponding stress–strain curves were experimentally obtained. Plastic dilatation and deviatoric strain were determined both for the local zones with artificial defects and directly for meso-elements (i.e., material cells with artificial defects). A symmetric second-rank order tensor of damage was applied for a quantitative estimate of the material damage connected with the volume fraction and shape of micro-defects. The definition of this tensor is physically motivated, since its hydrostatic and deviatoric parts describe the evolution of damage connected with a change in volume fraction and shape of micro-defects, respectively. Such a representation of damage kinetics allows us to use two integral measures for the calculation of damage in deformed materials. The first measure determines damage related to an increase in void volume fraction (i.e., plastic dilatation). A critical amount of plastic dilatation corresponds to the moment of macro-fracture of the deformed metal. By means of experimental analysis, we can determine the function of plastic dilatation which depends on the strain accumulated by material particles under various stress and temperature-rate conditions of forming. The second measure accounts for the deviatoric strain of meso-elements, and is related to the change in their shapes. The critical deformation of ellipsoidal voids corresponds to the onset of their coalescence and to the formation of large cavernous defects. The second measure is considered as a criterion of micro-destruction due to formation of cavities in the deformed material. Based on the experimental data, some numerical modeling is realized for the investigated Al alloys to taken a change in stress triaxiality into account. It shows that a change in triaxiality toward smaller values results in an appreciable decrease of damage induced by strain. Both damage measures are important for the prediction of the meso-structure quality of metalware produced by metal forming techniques.  相似文献   

19.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

20.
Ductile fracture in axisymmetric and plane strain notched tensile specimens is analyzed numerically, based on a set of elastic-plastic constitutive relations that account for the nucleation and growth of microvoids. Final material failure by void coalescence is incorporated into the constitutive model via the dependence of the yield function on the void volume fraction. In the analyses the material has no voids initially; but as the voids nucleate and grow, the resultant dilatancy and pressure sensitivity of the macroscopic plastic flow influence the solution significantly. Considering both a blunt notch geometry and a sharp notch geometry in the computations permits a study of the relative roles of high strain and high triaxiality on failure. Comparison is made with published experimental results for notched tensile specimens of high-strength steels. All axisymmetric specimens analyzed fail at the center of the notched section, whereas failure initiation at the surface is found in plane strain specimens with sharp notches, in agreement with the experiments. The results for different specimens are used to investigate the circumstances under which fracture initiation can be represented by a single failure locus in a plot of stress triaxiality vs effective plastic strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号