首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Internal state variable rate equations are cast in a continuum framework to model void nucleation, growth, and coalescence in a cast Al–Si–Mg aluminum alloy. The kinematics and constitutive relations for damage resulting from void nucleation, growth, and coalescence are discussed. Because damage evolution is intimately coupled with the stress state, internal state variable hardening rate equations are developed to distinguish between compression, tension, and torsion straining conditions. The scalar isotropic hardening equation and second rank tensorial kinematic hardening equation from the Bammann–Chiesa–Johnson (BCJ) Plasticity model are modified to account for hardening rate differences under tension, compression, and torsion. A method for determining the material constants for the plasticity and damage equations is presented. Parameter determination for the proposed phenomenological nucleation rate equation, motivated from fracture mechanics and microscale physical observations, involves counting nucleation sites as a function of strain from optical micrographs. Although different void growth models can be included, the McClintock void growth model is used in this study. A coalescence model is also introduced. The damage framework is then evaluated with respect to experimental tensile data of notched Al–Si–Mg cast aluminum alloy specimens. Finite element results employing the damage framework are shown to illustrate its usefulness.  相似文献   

2.
A phenomenological anisotropic damage progression formulation for porous ductile metals with second phases is described through mechanisms of void nucleation, growth and coalescence. The model is motivated from fracture mechanisms and microscale physical observations. To describe the creation of new pores, the decohesion at the particle–matrix interface and the fragmentation of second phase particles, the void-crack nucleation equation is related to several microstructural parameters (fracture toughness, length scale parameter, particle size, volume and fraction of second phase), the plastic strain level, and the stress state. Nucleation is represented by a general symmetric second rank tensor, and its components are proportional to the absolute value of the plastic strain rate components. Based on the Rice and Tracey model, void growth is a scalar function of the trace of damage tensor and the positive triaxiality. Like nucleation, coalescence is a second rank tensor governed by the plastic strain rate tensor and the stress state. The coalescence threshold is related to the void length scale for void impingement and void sheet mechanisms. The coupling of damage with the Bammann–Chiesa–Johnson (BCJ) plasticity model is written in the thermodynamic framework and derives from the concept of effective stress assuming the hypothesis of energy equivalence. A full-implicit algorithm is used for the stress integration and the determination of the consistent tangent operator. Finally, macroscale correlations to cast A356 AL alloy and wrought 6061-T6 AL alloy experimental data are completed with predictive void-crack evolution to illustrate the applicability of the anisotropic damage model.  相似文献   

3.
Finite element (FE) calculations of a cylindrical cell containing a spherical hole have been performed under large strain conditions for varying triaxiality with three different constitutive models for the matrix material, i.e. rate independent plastic material with isotropic hardening, visco-plastic material under both isothermal and adiabatic conditions, and porous plastic material with a second population of voids nucleating strain controlled. The “mesoscopic” stress-strain and void growth responses of the cell are compared with predictions of the modified Gurson model in order to study the effects of varying triaxiality and strain rate on the critical void volume fraction. The interaction of two different sizes of voids was modelled by changing the strain level for nucleation and the stress triaxiality. The study confirms that the void volume fraction at void coalescence does not depend significantly on the triaxiality if the initial volume fraction of the primary voids is small and if there are no secondary voids. The strain rate does not affect fc either. The results also indicate that a single internal variable, f, is not sufficient to characterize the fracture processes in materials containing two different size-scales of void nucleating particles.  相似文献   

4.
In many ductile metallic alloys, the damage process controlled by the growth and coalescence of primary voids nucleated on particles with a size varying typically between 1 and 100 μm, is affected by the growth of much smaller secondary voids nucleated on inclusions with a size varying typically between 0.1 and 3 μm. The goal of this work is first to quantify the potential effect of the growth of these secondary voids on the coalescence of primary voids using finite element (FE) unit cell calculations and second to formulate a new constitutive model incorporating this effect. The nucleation and growth of secondary voids do essentially not affect the growth of the primary voids but mainly accelerate the void coalescence process. The drop of the ductility caused by the presence of secondary voids increases if the nucleation strain decreases and/or if their volume fraction increases and/or if the primary voids are flat. A strong coupling is indeed observed between the shape of the primary voids and the growth of the second population enhancing the anisotropy of the ductility induced by void shape effects. The new micromechanics-based coalescence condition for internal necking introduces the softening induced by secondary voids growing in the ligament between two primary voids. The FE cell calculations were used to guide and assess the development of this model. The use of the coalescence condition relies on a closed-form model for estimating the evolution of the secondary voids in the vicinity of a primary cavity. This coalescence criterion is connected to an extended Gurson model for the first population including the effect of the void aspect ratio. With respect to classical models for single void population, this new constitutive model improves the predictive potential of damage constitutive models devoted to ductile metal while requiring only two new parameters, i.e. the initial porosity of second population and a void nucleation stress, without any additional adjustment.  相似文献   

5.
We present micromechanical finite element results that quantify coalescence effects based upon temperature and different spatial arrangements of voids. We propose a critical intervoid ligament distance (ILD) to define void coalescence that is derived from micromechanical simulations in which void volume fraction evolves as a function of strain. Several parameters were varied using the temperature and strain rate internal variable plasticity model of Bammann–Chiesa–Johnson to determine the coalescence effects. The parameters include two types of materials with different work hardening rates (304L stainless steel and 6061T6 aluminum), three different temperatures (298, 400, and 600 K), several boundary conditions (force and displacement: uniaxial, plane strain, and biaxial), type of element used (plane strain and axisymmetric), different ILDs, and the number of voids (one and two void configurations). The present study provides a basis for macroscale modeling of coalescence which is briefly discussed.  相似文献   

6.
7.
The mechanisms of void growth and coalescence in ductile polymeric layers, taking into account the effects of pressure-sensitivity, α, and plastic dilatancy, β, are explored in this two-part paper. In Part I, a two-dimensional model containing discrete cylindrical voids was used to simulate void growth and coalescence ahead of a crack. This paper extends the previous work by explicitly modeling initially spherical voids in a three-dimensional configuration. Damage predictions from the present 3D model for low yield strain adhesives are found to be in good agreement with both the 2D model in Part I and the computational cell element model. Significant discrepancies in the damage predictions, however, exist among all three models for high yield strain adhesives (e.g. polymers). The present 3D study also discusses the increasing damage level and its spatial extent with pressure-sensitivity, as well as the exacerbation of these effects arising from the deviation from an associated flow rule. In fact, both high porosity and high pressure-sensitivity promote void interaction. In addition, pressure-sensitivity increases the oblacity of the voids and reduces the intervoid ligament spacing over a wide range of load levels. These effects are compounded as the fracture process zone thickness decreases relative to the adhesive thickness. Results further show that both the adhesive toughness levels and the critical porosity governing the onset of void coalescence are significantly lowered with increasing pressure-sensitivity.  相似文献   

8.
9.
To achieve certain properties, semiconductor adhesives and molding compounds are made by blending filler particles with polymer matrix. Moisture collects at filler particle/polymer matrix interfaces and within voids of the composite. At reflow temperatures, the moisture vaporizes. The rapidly expanding vapor creates high internal pressure on pre-existing voids and particle/matrix interfaces. The simultaneous action of thermal stresses and internal vapor pressure drives both pre-existing and newly nucleated voids to grow and coalesce causing material failure. Particularly susceptible are polymeric films and adhesives joining elastic substrates, e.g. Ag filled epoxy. Several competing failure mechanisms are studied including: near-tip void growth and coalescence with the crack; extensive void growth and formation of an extended damaged zone emanating from the crack; and rapid void growth at highly stressed sites at large distances ahead of the crack, leading to multiple damaged zones. This competition is driven by the interplay between stress elevation induced by constrained plastic flow and stress relaxation due to vapor pressure assisted void growth.A model problem of a ductile film bonded between two elastic substrates, with a centerline crack, is studied. The computational study employs a Gurson porous material model incorporating vapor pressure effects. The formation of multiple damaged zones is favored when the film contains small voids or dilute second-phase particle distribution. The presence of large voids or high vapor pressure favor the growth of a self-similar damage zone emanating from the crack. High vapor pressure accelerates film cracking that can cause device failures.  相似文献   

10.
This work presents a model to represent ductile failure (i.e. failure controlled by nucleation, growth and coalescence) of materials whose irreversible deformation is controlled by several plastic or viscoplastic deformation mechanisms. In addition work hardening may result from both isotropic and kinematic hardening. Damage is represented by a single variable representing void volume fraction. The model uses an additive decomposition of the plastic strain rate tensor. The model is developed based on the definition of damage dependant effective scalar stresses. The model is first developed within the generalized standard material framework and expressions for Helmholtz free energy, yield potential and dissipation potential are proposed. In absence of void nucleation, the evolution of the void volume fraction is governed by mass conservation and damage does not need to be represented by state variables. The model is extended to account for void nucleation. It is implemented in a finite element software to perform structural computations. The model is applied to three case studies: (i) failure by void growth and coalescence by internal necking (pipeline steel) where plastic flow is either governed by the Gurson–Tvergaard–Needleman model or the Thomason model, (ii) creep failure (Grade 91 creep resistant steel) where viscoplastic flow is controlled by dislocation creep or diffusional creep and (iii) ductile rupture after pre-compression (aluminum alloy) where kinematic hardening plays an important role.  相似文献   

11.
State of the art ductile fracture models often rely on simple power laws to describe the strain hardening of the matrix material. Power laws do not distinguish between the two main stages of hardening observed in polycrystals, referred to as stage III and stage IV hardening, and which emerge from the evolution of the dislocation substructure. The aim of this study is to couple a physics based strain hardening law including these two stages to a micromechanics based ductile damage model. One of the main motivations is that, the stage IV constant hardening rate stage, occurring only at large strain, will be attained in most ductile failure problems if not at the overall level of deformation, at least locally around the growing voids. Furthermore, proper modelling of the stage III involving dislocation storage and recovery terms and the transition to stage IV provides a link with the underlying physical mechanisms of deformation and with the microstructure. First, in order to evaluate the effects of the stage III and stage IV hardening on void growth and coalescence, an extensive parametric study is performed on two-dimensional (2D) axisymmetric finite element (FE) unit cell calculations, using a Kocks-Mecking type hardening law. The cell calculations demonstrate that accounting for the stage IV hardening can have a profound effect on delaying void coalescence and increasing the ductility. The magnitude of the recovery term during stage III has also a significant effect on the void growth rate. Then, the Kocks-Mecking law is incorporated into the Gologanu-Leblond-Devaux (GLD) porous plasticity model supplemented by two different versions of the Thomason void coalescence criterion. The predictions of the damage model are in good agreement with the results of the FE calculations in terms of the stress-strain curves, the evolution of void shape and porosity, as well as the strain value at the onset of void coalescence.  相似文献   

12.
Beyond pressure-sensitivity, plastic deformation of glassy polymers exhibits intrinsic softening followed by progressive rehardening at large strains. This highly nonlinear stress–strain behavior is captured by a constitutive model introduced in this work. In the first part of the paper, we focus on void growth and coalescence in an axisymmetric representative material volume consisting of a single large void and a population of discrete microvoids. Our study shows that microvoid cavitation, enhanced by strain softening, accelerates the process of void coalescence resulting in brittle-like failure at lowered stresses and strains. Pressure-sensitivity also reduces stress-carrying capacity as well as influences the strain for void coalescence; plastic dilatancy effects are relatively milder. In the second part of the paper, we introduce a population of discrete spherical voids within a three-dimensional computational model to study void growth and damage ahead of a crack front. Our studies reveal a distinctive change in the deformed void shape from oblate to prolate when strain softening is followed by high rehardening at large plastic strains. By contrast, an extended strain softening regime promotes oblacity and facilitates multiple void interaction and their cooperative growth over large distances ahead of the crack front. This multi-void failure mechanism is exacerbated by pressure-sensitivity.  相似文献   

13.
针对强动载作用下延性金属的层裂问题,在分析孔洞之间几何关联的基础上,定义了一个新的耦合损伤及孔洞几何信息的孔洞汇合判定方法,同时,基于能量守恒原理,解析了孔洞汇合对损伤快速增长影响的物理机理.通过分析数值计算结果和对比相关文献的实验可知:孔洞汇合后不仅引起损伤增长,而且导致了损伤材料内部微孔洞数目的减少、孔洞平均尺寸的增加。  相似文献   

14.
In many glassy amorphous polymers, localisation of deformation during loading leads to crazes. Crazes are crack like features whose faces are bridged either by fibrils or a cellular network of voids and fibrils. While formation of crazes is aided by the presence of surface imperfections and embedded dust particles, in this work, we focus on intrinsic crazes that form spontaneously in the volume of the material. We perform carefully designed molecular dynamics simulations on well equilibrated samples of a model polymer with a view to gaining insights into certain incompletely understood aspects of the crazing process. These include genesis of the early nanovoids leading to craze nucleation, mechanisms of stabilising the cellular or fibrillar structure and the competition between chain scission and chain disentanglement in causing the final breakdown of the craze. Additionally, we identify and enumerate clusters of entanglement points with high functionality as effective topological constraints on macromolecular chains. We show that regions with low density of entanglement clusters serve as sites for nanovoid nucleation under high mean stress. Growth occurs by the repeated triggering of cavitation instabilities above a growing void. The growth of the void is aided by disentanglement in and flow of entanglements away from the cavitating region. Finally, for the chain lengths chosen, scission serves to supply short chains to the growing craze but breakdown occurs by complete disentanglement of the chains. In fact, most of the energy supplied to the material seems to be used in causing disentanglements and very little energy is required to create a stable fibril.  相似文献   

15.
A microscopic damage model of ellipsoidal body containing ellipsoidal void for nonlinear matrix materials is developed under a particular coordinate. The change of void shape is considered in this model. The viscous restrained equation obtained from the model is affected by stress ∑_(ij), void volume fraction f, material strain rate exponent m as well as the void shape. Gurson's equation is modified from the numerical solution. The modified equation is suitable for the case of nonlinear matrix materials and changeable voids. Lastly, the model is used to analyze the closing process of voids.  相似文献   

16.
Two distinct mechanisms of crack initiation and advance by void growth have been identified in the literature on the mechanics of ductile fracture. One is the interaction a single void with the crack tip characterizing initiation and the subsequent void by void advance of the tip. This mechanism is represented by the early model of Rice and Johnson and the subsequent more detailed numerical computations of McMeeking and coworkers on a single void interacting with a crack tip. The second mechanism involves the simultaneous interaction of multiple voids on the plane ahead of the crack tip both during initiation and in subsequent crack growth. This mechanism is revealed by models with an embedded fracture process zone, such as those developed by Tvergaard and Hutchinson. While both mechanisms are based on void nucleation, growth and coalescence, the inferences from them with regard to crack growth initiation and growth are quantitatively different. The present paper provides a formulation and numerical analysis of a two-dimensional plane strain model with multiple discrete voids located ahead of a pre-existing crack tip. At initial void volume fractions that are sufficiently low, initiation and growth is approximately represented by the void by void mechanism. At somewhat higher initial void volume fractions, a transition in behavior occurs whereby many voids ahead of the tip grow at comparable rates and their interaction determines initiation toughness and crack growth resistance. The study demonstrates that improvements to be expected in fracture toughness by reducing the population of second phase particles responsible for nucleating voids cannot be understood in terms of trends of one mechanism alone. The transition from one mechanism to the other must be taken into account.  相似文献   

17.
高应变率下延性多孔介质中孔洞的动态演化   总被引:5,自引:1,他引:5  
本文提出了一个新的材料延性动态损伤模型,模型中不但包括了率效应,同时还考虑了惯性效应,孔洞表面能变化和材料硬化对孔洞演化的影响。此外,在模型中同时考虑了体应力和偏应力对孔洞演化的作用,从孔洞演化方程地接到了孔洞增长和压缩应力临界表达式,Carroll和Holt结果作为该表达式的一个特例而得出,模型的数值分析得出以下结论:①延性孔洞的动太增长对率效应十分敏感,应变率越高,孔洞增长越快;②惯性效应在主  相似文献   

18.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

19.
通过编制率相关有限元用户子程序,采用一个单胞模型研究了FCC晶体中孔洞在单晶及晶界的长大行为,分析了由于晶体取向及变形失配对孔洞长大和聚合的影响。研究结果表明:孔洞的形状和长大方向与晶体取向密切相关;晶界上孔洞的长大速度大于单晶中孔洞的长大速度;晶粒间的变形失配加速了晶界上孔洞的长大趋势,因而使材料易发生沿晶断裂,随着晶粒间取向因子差异的增加,孔洞越易沿着晶界长大。  相似文献   

20.
The main aim of this paper is to opens out the meso-mechanism of void growth and coalescence in the matrix materials with graded strain-hardening exponent distribution. For this end, detailed finite element computations of a representative cylindrical cell containing a spherical void have been carried out. According to the FE analyses, significant effects of the strain-hardening exponent gradient (SEG) in the matrix on the void growth and coalescence are revealed: (1) In the homogeneous materials, the void growth and coalescence are slightly dependent on the strain-hardening exponent, however, the SEG distribution in the matrix can increase remarkably the void growth rate and decrease seriously the void coalescence strain. (2) The critical void shapes in the homogeneous materials are mainly governed by the macroscopic stress triaxiality, but due to earlier plastic flow localization in the softer matrix layer, the SEG distribution in the matrix has very significant effects on the deformed void shapes, especially when the stress triaxiality is lower. (3) When the triaxial stress levels are lower, in the homogeneous materials, the shape change mode of the void evolution is dominate so the void growth rate is very low; however, the SEG distribution in the matrix can bring the volume change mode out, as a result of increasing the void growth rate. (4) Comparisons of the numerical results with the existing damage model indicate that the classic damage model cannot give satisfying prediction to the void growth in both the homogeneous strain-hardening matrix and the SEG materials. On the basis of large numbers of numerical computations, a new damage model, which can uniformly describe the void growing in the homogeneous and plasticity gradient materials, is suggested. A mass of element computations have validated that the new damage model can give satisfying agreement with the FE results of cell model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号