首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady, incompressible, viscous laminar flow over a NACA 0012 airfoil is simulated, and the effects of several parameters investigated. A vortex method is used to solve the two-dimensional Navier–Stokes equations in the vorticity/stream-function form. By applying an operator-splitting method, the “convection” and “diffusion” equations are solved sequentially at each time step. The convection equation is solved using the vortex-in-cell method, and the diffusion equation using a second-order ADI finite difference scheme. The airfoil profile is obtained by mapping a circle in the computational domain into the physical domain through a Joukowski transformation. The effects of several parameters are investigated, such as the reduced frequency, mean angle of attack, location of pitch axis, and the Reynolds number. It is observed that the reduced frequency has the most influence on the flow field.  相似文献   

2.
In this study a model which was developed previously is used to theoretically investigate the steady flow of a particulate suspension into two-dimensional horizontal and inclined channels. The continuity equation for the fluid and the simplified two-dimensional Navier-Stokes equations are then solved together with a particle concentration equation. This latter equation is formulated by considering the balance between the particle flux due to gravity with the corresponding particle fluxes due to convection and shear-induced diffusion. The resulting coupled system of equations is solved numerically using a specialised finite-difference method. It is found, for the parameter range for flows of proppants in hydraulic fractures, that when the suspension enters the channel with a uniform velocity profile it almost instantaneously becomes parabolic. In addition, the effects of particle sedimentation are most dominant in the entrance region, but further downstream such effects are balanced as shear-induced particle diffusion becomes more important. It is also shown that the suspension flow depends critically on the choice of the parameters used, e.g. the ratio of the particle radius to the height of the channel.  相似文献   

3.
I.IntroductionIntilenearfuture,ourcountry'sproductspipelinetransportwillhavebeendevelopedgreatly.Themeansbywhichmanyrefinedpetroleumproductsaretransportedthroughasinglepipelineiscalledbatchingtransport.Thismeansispossessedofadvantagesthatavarietyofrefinedpetroleumproductscanbetrallsportedthroughasinglepipelineandinvestmentcanbereduced.[-lowever,tile1ila-jorproblemresultedfronlthebatchingtrallsportisthecontamillationbetweenbatcllcs,whichmaydeterioratethequalityofproductstransported.Therefore,i…  相似文献   

4.
The two‐dimensional convection–diffusion‐type equations are solved by using the boundary element method (BEM) based on the time‐dependent fundamental solution. The emphasis is given on the solution of magnetohydrodynamic (MHD) duct flow problems with arbitrary wall conductivity. The boundary and time integrals in the BEM formulation are computed numerically assuming constant variations of the unknowns on both the boundary elements and the time intervals. Then, the solution is advanced to the steady‐state iteratively. Thus, it is possible to use quite large time increments and stability problems are not encountered. The time‐domain BEM solution procedure is tested on some convection–diffusion problems and the MHD duct flow problem with insulated walls to establish the validity of the approach. The numerical results for these sample problems compare very well to analytical results. Then, the BEM formulation of the MHD duct flow problem with arbitrary wall conductivity is obtained for the first time in such a way that the equations are solved together with the coupled boundary conditions. The use of time‐dependent fundamental solution enables us to obtain numerical solutions for this problem for the Hartmann number values up to 300 and for several values of conductivity parameter. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Large eddy simulations of natural convection along a vertical isothermal surface have been carried out using a parallel CFD code SMAFS (Smoke Movement And Flame Spread) developed by the first author to study the dynamics of the natural convection flow and the associated convective heat transfer, with sub-grid scale turbulence modeled using the Smagorinsky model. In the computation, the filtered governing equations are discretized using finite volume method, with the variables at the cell faces in the finite volume discrete equations approximated by a second order bounded QUICK scheme and the diffusion term computed based on central difference scheme. The computation was time marched explicitly, with momentum equations solved based on a second order fractional-step Adams–Bashford scheme and enthalpy computed using a second order Runge–Kutta scheme. The Poisson equation for pressure from the continuity equation was solved using a multi-grid solver. The results including the temperature and velocity profiles of the boundary layer and the local heat transfer rate are analyzed. Comparison is made with experimental data and good agreement is found.  相似文献   

6.
Flux splitting is applied to the convective part of the steady Navier–Stokes equations for incompressible flow. Partial upwind differences are introduced in the split first-order part, while central differences are used in the second-order part. The discrete set of equations obtained is positive, so that it can be solved by collective variants of relaxation methods. The partial upwinding is optimized in the same way as for a scalar convection–diffusion equation, but involving several Peclet numbers. It is shown that with the optimum partial upwinding accurate results can be obtained. A full multigrid method in W-cycle form, using red–black successive under-relaxation, injection and bilinear interpolation, is described. The efficiency of this method is demonstrated.  相似文献   

7.
吴健  张蒙齐  田方宝 《力学学报》2018,50(6):1458-1469
本文对封闭方腔内介电液体电对流进行了三维数值模拟研究.方腔的6个边界为固壁;4个侧边界为电绝缘边界;上下界面为两个电极.直流电场作用在从底部电极注入的自由电荷上,从而对液体施加库伦体积力并驱动流体流动形成电对流.为了求解这一物理问题,发展了一种二阶精度的有限体积法来求解完整的控制方程,包括Navier-Stokes方程和一组简化的Maxwell方程.考虑到电荷密度方程的强对流占优特性,采用了全逆差递减格式来求解该方程,获得了准确有界的解.通过研究发现,该流动在有限振幅区内的分叉类型为亚临界,即系统存在一个线性和非线性临界值,分别对应流动的开始和终止.由于非线性临界值比线性值小,因此两个临界值之间有一个迟滞回线.与无限大域中的自由对流相比,侧壁施加的额外约束改变了流场结构,使这两个临界值均有所增大.此外,还讨论了电荷密度和速度场的空间分布特征,发现电荷密度分布中存在电荷空白区.最后对更小空间尺寸情况计算结果表明,流动的线性分叉类型为超临界.本文的结果拓展了已有的二维有限空间内电对流的研究,并为三维电对流的线性和弱非线性理论分析提供参考.   相似文献   

8.
A sharp interface problem arising in the flow of two immiscible fluids, slag and molten metal in a blast furnace, is formulated using a two-dimensional model and solved numerically. This problem is a transient two-phase free or moving boundary problem, the slag surface and the slag–metal interface being the free boundaries. At each time step the hydraulic potential of each fluid satisfies the Laplace equation which is solved by the finite element method. The ordinary differential equations determining the motion of the free boundaries are treated using an implicit time-stepping scheme. The systems of linear equations obtained by discretization of the Laplace equations and the equations of motion of the free boundaries are incorporated into a large system of linear equations. At each time step the hydraulic potential in the interior domain and its derivatives on the free boundaries are obtained simultaneously by solving this linear system of equations. In addition, this solution directly gives the shape of the free boundaries at the next time step. The implicit scheme mentioned above enables us to get the solution without handling normal derivatives, which results in a good numerical solution of the present problem. A numerical example that simulates the flow in a blast furnace is given.  相似文献   

9.
This paper reports a detailed numerical investigation on mixed convection flow of a polar fluid through a porous medium due to the combined effects of thermal and mass diffusion. The energy equation accounts for heat generation or absorption, while the nth order homogeneous chemical reaction between the fluid and the diffusing species is included in the mass diffusion equation. The governing equations of the linear momentum, angular momentum, energy and concentration are obtained in a non-similar form by introducing a suitable group of transformations. The final set of non-similar coupled non-linear partial differential equations is solved using an implicit finite-difference scheme in combination with quasi-linearization technique. The effects of various parameters on the velocity, angular velocity, temperature and concentration fields are investigated. Numerical results for the skin friction coefficient, wall stress of angular velocity, Nusselt number and Sherwood number are also presented.  相似文献   

10.
The Modified Galerkin Method (MGM) has been proposed as one of the most efficient methods for two-dimensional convection-diffusion equations. In the MGM, the non-symmetric matrices, which are derived from the convection term in the Galerkin formulation, are not used, and an artificial diffusion is introduced through an error analysis approach to improve its discretization accuracy in both time and space directions. In this study, the MGM is applied for two-dimensional viscous fluid flow analysis, and the driven cavity flow problems are solved up to Reynolds number of 10,000 using the vorticity-stream function formulation and non-uniform meshes. The results show the effectiveness of MGM.  相似文献   

11.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A coupled numerical method for the direct simulation of shallow water dynamics and pollutant transport is formulated and implemented. The conservation equations of shallow water dynamics equations and the convection–diffusion equations are solved using the lattice Boltzmann (LB) method. The local equilibrium distribution of the pollutant has no terms of second order in flow velocity. And the relaxation time of the pollutant deviates from a constant for the flows with variable free surface water depth. The numerical tests show that this scheme strictly obeys the conservation law of mass and momentum. Excellent agreement is obtained between numerical predictions and analytical solutions in the pure diffusion problem and convection–diffusion problem. Furthermore, the influences on the accuracy of the lattice size and the diffusivity are also studied. The results indicate that the variation in the free surface water depth cannot affect the conservation of the model, and the model has the ability to simulate the complex topography problem. The comparison shows that the LB scheme has the capacity to solve the complex convection–diffusion problem in shallow water. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
The unsteady laminar incompressible mixed convection flow over a two-dimensional body (cylinder) and an axisymmetric body (sphere) has been studied when the buboyancy forces arise from both thermal and mass diffusion and the unsteadiness in the flow field is introduced by the time dependent free stream velocity. The nonlinear partial differential equations with three independent variables governing the flow have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. The results indicate that for the thermally assisting flow the local skin friction, heat transfer and mass diffusion are enhanced when the buoyancy force from mass diffusion assists the thermal buoyancy force. But this trend is opposite for the thermally opposing flow. The point of zero skin friction moves upstream due to unsteadiness. No singularity is observed at the point of zero skin friction for unsteady flow unlike steady flow. The flow reversal is observed after a certain instant of time. The velocity overshoot occurs for assisting flows.  相似文献   

14.
The unsteady incompressible Navier-Stokes equations have been accurately solved for the laminar flow past a circular cylinder in the Reynolds number range 50–200. A direct elliptic solver called the SEVP is used to rapidly advance the streamfunction in time, facilitating the overall convergence to the fully periodic or quasi-steady state. A new integral-series method is developed for the far-field streamfunction condition on a finite two-dimensional computational domain. The use of fourth-order Hermitian relations for the convection terms in the conservation-form vorticity transport equation has also contributed to the good comparison of the present results with the earlier experimental data. The vortex-shedding patterns visualized by the experimentalist are numerically reproduced here in the given Reynolds number range. Discussions that may be helpful in interpreting the behaviour of the shedding frequency are presented in the main text.  相似文献   

15.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

16.
建立了非规则区域的有限分析5点格式,增加了有限分析法对不规则边界的适应性。应用所提出的方法对水利工程中常见的有压和无压流动进行了计算,与实验和前人的计算结果相比较,本文的方法都能得到较为满意的结果。本文的计算格式也可以应用到其他非规则区域的计算中。  相似文献   

17.
Solution algorithms for solving the Navier–Stokes equations without storing equation matrices are developed. The algorithms operate on a nodal basis, where the finite element information is stored as the co-ordinates of the nodes and the nodes in each element. Temporary storage is needed, such as the search vectors, correction vectors and right hand side vectors in the conjugate gradient algorithms which are limited to one-dimensional vectors. The nodal solution algorithms consist of splitting the Navier–Stokes equations into equation systems which are solved sequencially. In the pressure split algorithm, the velocities are found from the diffusion–convection equation and the pressure is computed from these velocities. The computed velocities are then corrected with the pressure gradient. In the velocity–pressure split algorithm, a velocity approximation is first found from the diffusion equation. This velocity is corrected by solving the convection equation. The pressure is then found from these velocities. Finally, the velocities are corrected by the pressure gradient. The nodal algorithms are compared by solving the original Navier–Stokes equations. The pressure split and velocity–pressure split equation systems are solved using ILU preconditioned conjugate gradient methods where the equation matrices are stored, and by using diagonal preconditioned conjugate gradient methods without storing the equation matrices. © 1998 John Wiley & Sons, Ltd.  相似文献   

18.
This paper studies the thermal-diffusion and diffusion thermo-effects in the hydro-magnetic unsteady flow by a mixed convection boundary layer past an imperme- able vertical stretching sheet in a porous medium in the presence of chemical reaction. The velocity of t~he stretching surface, the surface temperature, and the concentration are assumed to vary linearly with the distance along the surface. The governing partial differential equations are transformed into self-similar unsteady equations using similarity transformations .and solved numerically by the Runge-Kutta fourth order scheme in as- sociation with the shooting method for the whole transient domain from the initial state to the final steady state flow. Numerical results for the velocity, the temperature, the concentration, the skin friction, and the Nusselt and Sherwood numbers are shown graph- ically for various flow parameters. The results reveal that there is a smooth transition of flow from unsteady state to the final steady state. A special case of our results is in good agreement with an earlier published work.  相似文献   

19.
In the absence of capillarity the single-component two-phase porous medium equations have the structure of a nonlinear parabolic pressure (equivalently, temperature) diffusion equation, with derivative coupling to a nonlinear hyperbolic saturation wave equation. The mixed parabolic-hyperbolic system is capable of substaining saturation shock waves. The Rankine-Hugoniot equations show that the volume flux is continuous across such a shock. In this paper we focus on the horizontal one-dimensional flow of water and steam through a block of porous material within a geothermal reservoir. Starting from a state of steady flow we study the reaction of the system to simple changes in boundary conditions. Exact results are obtainable only numerically, but in some cases analytic approximations can be derived. When pressure diffusion occurs much faster than saturation convection, the numerical results can be described satisfactorily in terms of either saturation expansion fans, or isolated saturation shocks. At early times, pressure and saturation profiles are functionally related. At intermediate times, boundary effects become apparent. At late times, saturation convection dominates and eventually a steady-state is established. When both pressure diffusion and saturation convection occur on the same timescale, initial simple shock profiles evolve into multiple shocks, for which no theory is currently available. Finally, a parameter-free system of equations is obtained which satisfactorily represents a particular case of the exact equations.  相似文献   

20.
目前流体流动与传热问题的研究大都基于确定性工况条件,而现实流体流动与传热问题中存在着大量不确定性因素,计算流体力学的不确定性量化提供了一种理解流体物性、边界条件与初始条件等不确定性因素对模拟结果影响的能力.为揭示随机多孔介质内顺磁性流体热磁对流的传播规律与演化特征,本文发展了一种基于侵入式多项式混沌展开法的热磁对流不确...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号