首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
力学   5篇
数学   3篇
  2018年   1篇
  2013年   1篇
  2004年   2篇
  2002年   2篇
  1998年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The gas-liquid-solid three-phase mixed flow is the most general in multiphase mixed transportation. It is significant to exactly solve the coupling hydraulic transient problems of this type of multiphase mixed flow in pipelines. Presently, the method of characteristics is widely used to solve classical hydraulic transient problems. However, when it is used to solve coupling hydraulic transient problems, excessive interpolation errors may be introduced into the results due to unavoidable multiwave interpolated calculations. To deal with the problem, a finite difference scheme based on the Steger-Warming flux vector splitting is proposed. A flux vector splitting scheme is established for the coupling hydraulic transient model of gas-liquid-solid three-phase mixed flow in the pipelines. The flux subvectors are then discretized by the Lax-Wendroff central difference scheme and the Warming-Beam upwind difference scheme with second-order precision in both time and space. Under the Rankine-Hugoniot conditions and the corresponding boundary conditions, an effective solution to those points located at the boundaries is developed, which can avoid the problem beyond the calculation region directly induced by the second-order discrete technique. Numerical and experimental verifications indicate that the proposed scheme has several desirable advantages including high calculation precision, excellent shock wave capture capability without false numerical oscillation, low sensitivity to the Courant number, and good stability.  相似文献   
2.
对流扩散方程在成品油顺序输送混油分析中的应用   总被引:1,自引:0,他引:1  
本文研究了对流与扩散对成品油顺序输送混油过程的影响;推导了紊流条件下,描述混油过程的对流占优的扩散方程;将该方程分解为纯对流方程和纯扩散方程,分别应用特征线法和差分法求解,数值计算结果和实际操作经验相符,能很好地解释混油的形成和发展.  相似文献   
3.
Hydraulic transient, which is resulted from sudden increase of inlet pressure for laminar pipeline flow, is studied. The partial differential equation, initial and boundary conditions for transient pressure were constructed, and the theoretical solution was obtained by variable-separation method. The partial differential equation, initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method. The theoretical solution conforms to numerical solution obtained by method of characteristics (MOC) very well.  相似文献   
4.
I.IntroductionIntilenearfuture,ourcountry'sproductspipelinetransportwillhavebeendevelopedgreatly.Themeansbywhichmanyrefinedpetroleumproductsaretransportedthroughasinglepipelineiscalledbatchingtransport.Thismeansispossessedofadvantagesthatavarietyofrefinedpetroleumproductscanbetrallsportedthroughasinglepipelineandinvestmentcanbereduced.[-lowever,tile1ila-jorproblemresultedfronlthebatchingtrallsportisthecontamillationbetweenbatcllcs,whichmaydeterioratethequalityofproductstransported.Therefore,i…  相似文献   
5.
针对前混合磨料水射流冲蚀过程,进行了冲蚀试验及仿真研究.从试验中得到了材料冲蚀损伤形貌特征.采用SPH耦合FEM方法建立相应的冲蚀模型,对材料冲蚀过程进行模拟分析,揭示了材料损伤形貌特征产生的机理.结果表明:随着冲蚀深度的增加,磨料颗粒的冲蚀动能逐渐减小,冲蚀角度逐渐增大,材料冲蚀损伤由微切削和微犁削逐渐变为冲击变形,材料冲蚀损伤断面的形貌特征逐渐恶化,具体表现为拖尾角和表面粗糙度逐渐增大.不同金属材料损伤断面形貌特征具有相似性,但是金属材料属性的差异会对磨料冲蚀过程产生影响,导致条纹在材料损伤断面上的分布和条纹角度出现差异.由于材料损伤形貌特征受控于磨料颗粒运动特性,因此材料冲蚀断面质量改善应该从改变磨料颗粒运动特性角度出发,这为进一步研究材料冲蚀断面质量改进奠定了理论基础.  相似文献   
6.
分析管流水力-热力瞬变的双特征线法   总被引:1,自引:1,他引:0  
研究了管道内流体流动的水力瞬变及热力瞬变,改进了分析介质顺序输送管流水力瞬变的特征线法;推导了含流速v的 3次方的热力瞬变方程,构造了相应的特征线法;建立了分析介质顺序输送管流耦合的水力-热力瞬变的双特征线法。  相似文献   
7.
IntroductionMethodofcharacteristics (MOC)hasstillbeenthepowerfultooltoanalyzehydraulictransientofpipelineflowsincethe 1 960s.Seldomhasthethermaltransientbeentakenintoaccount.Heatduetofrictionvarieswhenflowratechangedbecauseofvariouskindsofreasons,whichcaus…  相似文献   
8.
研究了层流状态下管道入口压力突然升高引起的水力瞬变过程,建立了瞬态压力分布的偏微分方程和初边值条件,用分离变量法求得了压力的理论解.根据压力和流量间的约束关系,得到了关于流量的偏微分方程和初边值条件,用分离变量求得了瞬变过程流量分布理论解.最后,用特征线法(MOC)对该问题进行了数值求解,理论解和数值解吻合很好.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号