首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Predicting the Onset of Inertial Effects in Sandstone Rocks   总被引:1,自引:0,他引:1  
Garrouch  A. A.  Ali  L. 《Transport in Porous Media》2001,44(3):487-505
This study presents a method to determine the onset of inertial effects at the microscopic level, to distinguish between Darcy and non-Darcy flow regions within porous media at the pore level, and to quantify the effects of retained polymer on gas mobility. Capillary pressure and polymer flood experiments were conducted using Elgin and Okesa sandstone samples. The pore-size distributions were used to study the high-velocity flow effects. A modified capillary-orifice model was used to determine the non-Darcy flow effects at the pore level, with and without residual polymer.The overall flow behavior at any flow rate may be described as the average of all contributions from the Darcy and the non-Darcy terms in all pores. Results of this study suggest that the conventional Reynolds number may lead to incorrect analysis of flow behavior when evaluating non-Darcy flow effects in porous media. The Forchheimer number, defined as the ratio of inertial forces to viscous forces, is found more adequate for analyzing microscopic flow behavior in porous media.  相似文献   

2.
Non-Darcy film condensation over a vertical flat plate within a porous medium is considered. The Forchheimer extended Darcy model is adopted to account for the non-Darcy effects on film condensation in the presence of both gravity and externally forced flow. A general similarity transformation is proposed upon introducing a modified Peclet number based on the total velocity of condensate, resulting from both gravitational force and externally forced flow. This general treatment makes it possible to obtain all possible similarity solutions including the asymptotic results in the four different limiting regimes, namely, Darcy forced convection regime, Forchheimer forced convection regime, Darcy body force predominant regime and Forchheimer body force predominant regime. Appropriate dimensionless groups for distinguishing these asymptotic regimes are found to be the micro-scale Grashof and Reynolds numbers based on the square root of the permeability of the porous medium. Correspondingly, the non-Darcy effect on the heat transfer rate are investigated in terms of these micro-scale dimensionless numbers.  相似文献   

3.
A new analytical derivation for momentum transport during laminar flow through granular porous media is discussed and some of its implied results described. In the very low Reynolds number regime fully developed laminar flow is assumed and in the higher laminar Reynolds number regime the Forchheimer (non-Darcy) effect is modelled through reference to form drag induced by the solid constituents of the porous medium. The results are compared to the Ergun equation, which is empirically based on experimental measurements, and the correspondence is shown to be remarkably close.  相似文献   

4.
This paper presents a numerical approach for the simulation of fluid flow through porous media by proposing a theoretical and numerical meso-to-macro multiscale framework, which combines the advantages of the lattice Boltzmann method (LBM) with the continuum Theory of Porous Media (TPM) to efficiently and accurately model fluid transport in heterogeneous porous media. In particular, LBM presents an alternative to experiments by studying the flow from a mesoscopic perspective, which in turn, allows the derivation of the material parameters needed for simulating the flow in the macroscopic TPM model. In this work, a meso-macro hierarchic upscaling scheme is applied to investigate the deformation-dependent intrinsic permeability properties and the Darcy/non-Darcy fluid flow regime. Concerning the mesoscale, the intrinsic permeability of the porous domain is computed by means of the LBM model at the first stage. Subsequently, deformation of the medium takes place in furtherance of determining the relation of the aforementioned deformation dependency. Thereupon, these findings are input into the TPM model in order to compute the primary unknown variables, where special focus is laid on the stability challenges in the compaction and near compaction states. With respect to the criteria of non-Darcy fluid flow, the conditions of its onset, i.e. the induced pressure gradient and mean fluid flow velocity, are computed as well using the LBM solver and conveyed afterwards to the macroscopic TPM model. Herein, the non-Darcy intrinsic permeability has been investigated in the TPM approach based on the Forchheimer equation. Simulations done on a synthetic porous micro-structure show that the combined framework proved to stand well between the two approaches.  相似文献   

5.
Near wellbore flow in high rate gas wells shows the deviation from Darcy??s law that is typical for high Reynolds number flows, and prediction requires an accurate estimate of the non-Darcy coefficient (?? factor). This numerical investigation addresses the issues of predicting non-Darcy coefficients for a realistic porous media. A CT-image of real porous medium (Castlegate Sandstone) was obtained at a resolution of 7.57???m. The segmented image provides a voxel map of pore-grain space that is used as the computational domain for the lattice Boltzmann method (LBM) based flow simulations. Results are obtained for pressure-driven flow in the above-mentioned porous media in all directions at increasing Reynolds number to capture the transition from the Darcy regime as well as quantitatively predict the macroscopic parameters such as absolute permeability and ?? factor (Forchheimer coefficient). Comparison of numerical results against experimental data and other existing correlations is also presented. It is inferred that for a well-resolved realistic porous media images, LBM can be a useful computational tool for predicting macroscopic porous media properties such as permeability and ?? factor.  相似文献   

6.
Recent laboratory studies and analyses (Lai et al. Presented at the 2009 Rocky Mountain Petroleum Technology Conference, 14–16 April, Denver, CO, 2009) have shown that the Barree and Conway model is able to describe the entire range of relationships between flow rate and potential gradient from low- to high-flow rates through porous media. A Buckley and Leverett type analytical solution is derived for non-Darcy displacement of immiscible fluids in porous media, in which non-Darcy flow is described using the Barree and Conway model. The comparison between Forchheimer and Barree and Conway non-Darcy models is discussed. We also present a general mathematical and numerical model for incorporating the Barree and Conway model in a general reservoir simulator to simulate multiphase non-Darcy flow in porous media. As an application example, we use the analytical solution to verify the numerical solution for and to obtain some insight into one-dimensional non-Darcy displacement of two immiscible fluids with the Barree and Conway model. The results show how non-Darcy displacement is controlled not only by relative permeability, but also by non-Darcy coefficients, characteristic length, and injection rates. Overall, this study provides an analysis approach for modeling multiphase non-Darcy flow in reservoirs according to the Barree and Conway model.  相似文献   

7.
In this article, the non-isothermal Poiseuille flow and its stability in a vertical annulus filled with porous medium are investigated. The flow is induced by external pressure gradient and buoyancy force due to linearly varying inner wall temperature. The non-Darcy model along with Boussinesq approximation has been used. The Chebyshev spectral-collocation method has been adopted to solve the governing equations related to basic flow as well as its stability. Special attention is given to understand the effect of curvature parameter of the annular geometry on the flow, heat transfer rate and stability of the stably stratified flow. A comprehensive numerical experiment indicates that reducing gap between two concentric cylinders decreases the heat transfer rate as well as the maximum magnitude of the flow velocity. It stabilizes the flow which has been shown through stability analysis. Furthermore, appropriateness of the Forchheimer term in the momentum equation has been examined by investigating the flow regime as well as its stability in the presence and absence of Forchheimer term. Finally, it has been found from the energy analysis at critical point that the thermal-buoyant instability is the only mode of instability for the considered range of different parameters.  相似文献   

8.
The effects of thermal dispersion and thermal radiation on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium are studied. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. Rosseland approximation is used to describe the radiative heat flux in the energy equation. Similarity solution for the transformed governing equations is obtained. Numerical results for the details of the velocity and temperature profiles which are shown on graphs have been presented. The combined effect of thermal dispersion and thermal radiation, for the two cases Darcy and non-Darcy porous medium, on the heat transfer rate which are entered in tables is discussed.  相似文献   

9.
10.
In this paper, the effects of viscous and Ohmic heating and heat generation/absorption on magnetohydrodynamic flow of an electrically conducting Casson thin film fluid over an unsteady horizontal stretching sheet in a non-Darcy porous medium are investigated. The fluid is assumed to slip along the boundary of the sheet. Similarity transformation is used to translate the governing partial differential equations into ordinary differential equations. A shooting technique in conjunction with the 4 th order Runge-Kutta method is used to solve the transformed equations. Computations are carried out for velocity and temperature of the fluid thin film along with local skin friction coefficient and local Nusselt number for a range of values of pertinent flow parameters. It is observed that the Casson parameter has the ability to enhance free surface velocity and film thickness, whereas the Forchheimer parameter, which is responsible for the inertial drag has an adverse effect on the fluid velocity inside the film. The velocity slip along the boundary tends to decrease the fluid velocity. This investigation has various applications in engineering and in practical problems such as very large scale integration(VLSI) of electronic chips and film coating.  相似文献   

11.
 A boundary layer analysis has been presented to study the influence of thermal radiation and lateral mass flux on non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations, and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. Similarity solution for the transformed governing equations is obtained and the combined effect of thermal radiation and fluid suction/injection on the heat transfer rate is discussed. Numerical results for the details of the velocity and temperature profiles as well as Nusselt number have been presented. Received on 7 July 1999  相似文献   

12.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

13.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

14.
In this article, the effects of chemical reaction and double dispersion on non-Darcy free convection heat and mass transfer from semi-infinite, impermeable vertical wall in a fluid saturated porous medium are investigated. The Forchheimer extension (non-Darcy term) is considered in the flow equations, while the chemical reaction power–law term is considered in the concentration equation. The first order chemical reaction (n = 1) was used as an example of calculations. The Darcy and non-Darcy flow, temperature and concentration fields in this study are observed to be governed by complex interactions among dispersion and natural convection mechanisms. The governing set of partial differential equations were non-dimensionalized and reduced to a set of ordinary differential equations for which Runge–Kutta-based numerical technique were implemented. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) are presented in graphs.  相似文献   

15.
The pore and pore-throat sizes of shale and tight rock formations are on the order of tens of nanometers. The fluid flow in such small pores is significantly affected by walls of pores and pore-throats. This boundary layer effect on fluid flow in tight rocks has been investigated through laboratory work on capillary tubes. It is observed that low permeability is associated with large boundary layer effect on fluid flow. The experimental results from a single capillary tube are extended to a bundle of tubes and finally to porous media of tight formations. A physics-based, non-Darcy low-velocity flow equation is derived to account for the boundary layer effect of tight reservoirs by adding a non-Darcy coefficient term. This non-Darcy equation describes the fluid flow more accurately for tight oil reservoir with low production rate and low pressure gradient. Both analytical and numerical solutions are obtained for the new non-Darcy flow model. First, a Buckley–Leverett-type analytical solution is derived with this non-Darcy flow equation. Then, a numerical model has been developed for implementing this non-Darcy flow model for accurate simulation of multidimensional porous and fractured tight oil reservoirs. Finally, the numerical studies on an actual field example in China demonstrate the non-negligible effect of boundary layer on fluid flow in tight formations.  相似文献   

16.
Upscaling Forchheimer law   总被引:2,自引:0,他引:2  
We investigate the high velocity flow in heterogeneous porous media. The model is obtained by upscaling the flow at the heterogeneity scale where the Forchheimer law is assumed to be valid. We use the method of multiple scale expansions, which gives rigorously the macroscopic behaviour without any prerequisite on the form of the macroscopic equations. We show that Forchheimer law does not generally survive upscaling. The macroscopic flow law is strongly non-linear and anisotropic. A 2-point Padé approximation of the flow law in the form of a Forchheimer law is given. However, this approximation is generally poor. These results are illustrated in two particular cases: a layered composite porous media and a composite constituted by a square array of circular porous inclusions embedded in a porous matrix. We show that non-linearities are sources of anisotropy.  相似文献   

17.
Laminar forced convection of gaseous slip flow in a circular micro-channel filled with porous media under local thermal equilibrium condition is studied numerically using the finite difference technique. Hydrodynamically fully developed flow is considered and the Darcy–Brinkman–Forchheimer model is used to model the flow inside the porous domain. The present study reports the effect of several operating parameters (Knudsen number (Kn), Darcy number (Da), Forchhiemer number (Γ), and modified Reynolds number ) on the velocity slip and temperature jump at the wall. Results are given in terms of the velocity distribution, temperature distribution, skin friction , and the Nusselt number (Nu). It is found that the skin friction is increased by (1) decreasing Knudsen number, (2) increasing Darcy number, and (3) decreasing Forchheimer number. Heat transfer is found to (1) decrease as the Knudsen number, or Forchheimer number increase, (2) increase as the Peclet number or Darcy number increase.  相似文献   

18.
The composite effects of viscosity, porosity, buoyancy parameter, thermal conductivity ratio and non-Darcy effects of Brinkman friction and Forscheimmer quadratic drag on the mixed convection boundary layer flow past a semi-infinite plate in a fully-saturated porous regime are theoretically and numerically investigated using Keller’s implicit finite-difference technique and a double-shooting Runge-Kutta method. The Brinkman Forcheimer-extended Darcy model is implemented in the hydrodynamic boundary layer equation. The effects of the various non-dimensional thermofluid parameters, viz Grashof number, Darcy number, and Forchheimer number, and also porosity, thermal conductivity and viscosity parameters on the velocity and temperature fields are discussed. Computations for both numerical schemes are made where possible and found to be in excellent agreement.  相似文献   

19.
Network Modeling of Non-Darcy Flow Through Porous Media   总被引:7,自引:0,他引:7  
Darcy's law is inadequate for describing high-velocity gas flow in porous media, which occurs in the near well-bore region of high capacity gas and condensate reservoirs. This study is directed at understanding the non-Darcy flow behavior. A pore-level network model has been developed to describe high velocity flow. The inputs to the model are pore size distributions and network coordination numbers. The outputs are permeability, non-Darcy coefficient, tortuousity and porosity. The additional pressure gradient term is found to be proportional to the square of the velocity in accordance with the Forchheimer's equation. The correlation between the non-Darcy coefficient and other flow properties (the permeability, the porosity and the tortuousity) is found to depend on the morphological parameters being changed. General correlations are derived between these flow properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号