首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Double-diffusive natural convection in a fluid saturated porous medium has been investigated using the finite element method. A generalised porous medium model is used to study both Darcy and non-Darcy flow regimes in an axisymmetric cavity. Results indicate that the Darcy number should be a separate parameter to understand flow characteristics in non-Darcy regime. The influence of porosity on heat and mass transfer is significant and the transport rates may differ by 25% or more, at higher Darcy and Rayleigh numbers. When compared with the Darcy and other specialised models of Brinkman and Forchheimer, the present generalised model predicts the least heat and mass transfer rates. It is also observed that an increase in radius ratio leads to higher Nusselt and Sherwood numbers along the inner wall.  相似文献   

2.
Predicting the Onset of Inertial Effects in Sandstone Rocks   总被引:1,自引:0,他引:1  
Garrouch  A. A.  Ali  L. 《Transport in Porous Media》2001,44(3):487-505
This study presents a method to determine the onset of inertial effects at the microscopic level, to distinguish between Darcy and non-Darcy flow regions within porous media at the pore level, and to quantify the effects of retained polymer on gas mobility. Capillary pressure and polymer flood experiments were conducted using Elgin and Okesa sandstone samples. The pore-size distributions were used to study the high-velocity flow effects. A modified capillary-orifice model was used to determine the non-Darcy flow effects at the pore level, with and without residual polymer.The overall flow behavior at any flow rate may be described as the average of all contributions from the Darcy and the non-Darcy terms in all pores. Results of this study suggest that the conventional Reynolds number may lead to incorrect analysis of flow behavior when evaluating non-Darcy flow effects in porous media. The Forchheimer number, defined as the ratio of inertial forces to viscous forces, is found more adequate for analyzing microscopic flow behavior in porous media.  相似文献   

3.
A theoretical solution is presented for the convective heat transfer of Giesekus viscoelastic fluid in pipes and channels, under fully developed thermal and hydrodynamic flow conditions, for an imposed constant heat flux at the wall. The fluid properties are taken as constant and axial conduction is negligible. The effect of Weissenberg number (We), mobility parameter (α) and Brinkman number (Br) on the temperature profile and Nusselt number are investigated. The results emphasize the significant effect of viscous dissipation and fluid elasticity on the Nusselt number in all circumstances. For wall cooling and the Brinkman number exceeds a critical value (Br 1), the heat generated by viscous dissipation overcomes the heat removed at the wall and fluid heats up longitudinally. Fluid elasticity shifts this critical Brinkman number to higher values.  相似文献   

4.
In this study, Darcy Forchheimer flow paradigm, which is a useful paradigm in fields such as petroleum engineering where high flow velocity effects are common, has been analyzed with artificial intelligence approach. In this context, first of all, Darcy–Forchheimer flow of Ree–Eyring fluid along a permeable stretching surface with convective boundary conditions has been examined and heat and mass transfer mechanisms have been investigated by including the effect of chemical process, heat generation/absorption, and activation energy. Cattaneo–Christov heat flux model has been used to analyze heat transfer properties. Within the scope of optimizing Darcy–Forchheimer flow of Ree–Eyring fluid; three different artificial neural network models have been developed to predict Nusselt number, Sherwood number, and skin friction coefficient values. The developed artificial neural network model has been able to predict Nusselt number, Sherwood number, and skin friction coefficient values with high accuracy. The findings obtained as a result of the study showed that artificial neural networks are an ideal tool that can be used to model Darcy–Forchheimer Ree–Eyring fluid flow towards a permeable stretch layer with activation energy and a convective boundary condition.  相似文献   

5.
Non-Darcy film condensation over a vertical flat plate within a porous medium is considered. The Forchheimer extended Darcy model is adopted to account for the non-Darcy effects on film condensation in the presence of both gravity and externally forced flow. A general similarity transformation is proposed upon introducing a modified Peclet number based on the total velocity of condensate, resulting from both gravitational force and externally forced flow. This general treatment makes it possible to obtain all possible similarity solutions including the asymptotic results in the four different limiting regimes, namely, Darcy forced convection regime, Forchheimer forced convection regime, Darcy body force predominant regime and Forchheimer body force predominant regime. Appropriate dimensionless groups for distinguishing these asymptotic regimes are found to be the micro-scale Grashof and Reynolds numbers based on the square root of the permeability of the porous medium. Correspondingly, the non-Darcy effect on the heat transfer rate are investigated in terms of these micro-scale dimensionless numbers.  相似文献   

6.
The effect of MHD on the total heat transfer from a porous fin attached to a vertical isothermal surface has been investigated. The Maxwell equations have been used, and also Rosseland approximation for radiation heat transfer and Darcy model for simulating the flow in porous medium have been adapted. The governing equations are reduced to a nonlinear ODE. The fin is supposed to be an infinite fin, which is exposed to a magnetic field. The dimensionless temperature profile, and the average Nusselt number profiles have been obtained for different Rayleigh numbers and porosities. Validation is carried out by comparing the results obtained in this study with those predicted by Darcy–Brinkman–Forchheimer model.  相似文献   

7.
A numerical study is performed to analyse heat and mass transfer phenomena due to natural convection in a composite cavity containing a fluid layer overlying a porous layer saturated with the same fluid. The flow in the porous region is modelled using Brinkman–Forchheimer-extended Darcy model that includes both the effect of macroscopic shear (Brinkman effect) and flow inertia (Forchheimer effect). The vertical walls of the two-dimensional enclosure are isothermal whilst the horizontal walls are adiabatic. The two regions are coupled by equating the velocity and stress components at the interface. The resulting coupled equations in non-dimensional form are solved by an alternating direction implicit method by transforming them into parabolic form by the addition of false transient terms. The numerical results show that the amount of fluid penetration into the porous layer depends strongly upon the Darcy, thermal and solutal Rayleigh numbers. Average Nusselt number decreases while average Sherwood number increases with an increase of the Lewis number. The transfer of heat and mass on the heated wall near the interface depends strongly on the Darcy number. Received on 11 May 1998  相似文献   

8.
The study considers the forced boundary-layer flow overlying the Darcy–Brinkman porous medium and gives a quantitative analysis of the nonlinear inertial terms in the Brinkman filtration equation. The inertial terms are shown to be larger than the Darcy’s drag near the porous medium interface. The applicability range of boundary-layer approach is determined. It is suitable in high-permeable media with moderate velocities of an external flow. If it is slow enough, the inertial terms can be omitted in spite of interface effect. On the other hand, fast external flow produces the filtration with large pore-scale Reynolds number; therefore, the Forchheimer’s drag should be taken into account. It is shown the Brinkman term as well as inertial terms have a significant role in boundary-layer formation within the porous medium.  相似文献   

9.
For a variety of fields in which micro-mechanical systems and electronic components are used, fluid flow and heat transfer at the microscale needs to be understood and modeled with an acceptable reliability. In general, models are prepared by making some extensions to the conventional theories by including the scaling effects that become important for microscale. Some of these effects are; axial conduction, viscous dissipation, and rarefaction. In addition to these effects, temperature variable thermal conductivity and viscosity may become important in microscale gas flows due to the high temperature gradients that may exist in the fluid. For this purpose, simultaneously developing, single phase, laminar and incompressible air flow in a microtube and in the micro gap between parallel plates is numerically analyzed. Navier–Stokes and energy equations are solved and the variation of Nusselt number along the channel is presented in tabular and graphical forms as a function of Knudsen, Peclet, and Brinkman numbers, including temperature variable thermal conductivity and viscosity.  相似文献   

10.
The modelling of viscous dissipation in a porous medium saturated by an incompressible fluid is discussed, for the case of Darcy, Forchheimer and Brinkman models. An apparent paradox relating to the effect of inertial effects on viscous dissipation is resolved, and some wider aspects of resistance to flow (concerning quadratic drag and cubic drag) in a porous medium are discussed. Criteria are given for the importance or otherwise of viscous dissipation in various situations.  相似文献   

11.
This article is devoted to combined convection heat transfer of nanofluids through a vertical channel filled with a homogeneous and isotropic porous medium. The flow is assumed to be fully developed and the “Brinkman extended Darcy” model is used for the flow in the porous media and “clear compatible” viscous dissipation model is considered. Also the model utilized for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing momentum, energy, and nanopartices volume fraction equations are solved both analytically and numerically. The effects of the influential dimensionless parameters such as Brownian and thermophoresis parameters, mixed convection parameter (Gr/Re), Brinkman, Darcy and Lewis numbers on dimensionless velocity and temperature distributions and pressure drop are studied. Also, the results of the Nusselt number for the both left and right walls are presented and discussed.  相似文献   

12.
In this study, a steady, fully developed laminar forced convection heat augmentation via porous fins in isothermal parallel-plate duct is numerically investigated. High-thermal conductivity porous fins are attached to the inner walls of two parallel-plate channels to enhance the heat transfer characteristics of the flow under consideration. The Darcy–Brinkman–Forchheimer model is used to model the flow inside the porous fins. This study reports the effect of several operating parameters on the flow hydrodynamics and thermal characteristics. This study demonstrates, mainly, the effects of porous fin thickness, Darcy number, thermal conductivity ratio, Reynolds number, and microscopic inertial coefficient on the thermal performance of the present flow. It is found that the highest Nusselt number is achieved at fully filled porous duct which requires the highest pumping pressure. The results show that using porous fins requires less pumping pressure with comparable high heat augmentation weight against fully filled porous duct. It is found that higher Nusselt numbers are achieved by increasing the microscopic inertial coefficient (A), the Reynolds number (Re), and the thermal conductivity of the porous substrate k 2. The results show that heat transfer can be enhanced (1) with the use of high thermal conductivity fins, (2) by decreasing the Darcy number, and (3) by increasing microscopic inertial coefficient.  相似文献   

13.
Fluid transport and the associated heat transfer through porous media is of immense importance because of its numerous practical applications. In view of the widespread applications of porous media flow, the present study attempts to investigate the forced convective heat transfer in the limiting condition for the flow through porous channel. There could be many areas, where heat transfer through porous channel attain some limiting conditions, thus, the analysis of limiting convective heat transfer is far reaching. The primary aim of the present study is focused on the limiting forced convection analysis considering the flow of Newtonian fluid between two asymmetrically heated parallel plates filled with saturated porous media. Utilizing a few assumptions, which are usually employed in the literature, an analytical methodology is executed to obtain the closed-form expression of the temperature profile, and in the following the expression of the limiting Nusselt numbers. The parametric variations of the temperature profile and the Nusselt numbers in different cases have been shown highlighting the influential role of different performance indexing parameters, like Darcy number, porosity of the media, and Brinkman number of forced convective heat transfer in porous channel. In doing so, the underlying physics of the transport characteristics of heat has been delineated in a comprehensive way. Moreover, a discussion has been made regarding an important feature like the onset of point of singularity as appeared on the variation of the Nusselt number from the consideration of energy balance in the flow field, and in view of second law of thermodynamics.  相似文献   

14.
In this article, the effects of chemical reaction and double dispersion on non-Darcy free convection heat and mass transfer from semi-infinite, impermeable vertical wall in a fluid saturated porous medium are investigated. The Forchheimer extension (non-Darcy term) is considered in the flow equations, while the chemical reaction power–law term is considered in the concentration equation. The first order chemical reaction (n = 1) was used as an example of calculations. The Darcy and non-Darcy flow, temperature and concentration fields in this study are observed to be governed by complex interactions among dispersion and natural convection mechanisms. The governing set of partial differential equations were non-dimensionalized and reduced to a set of ordinary differential equations for which Runge–Kutta-based numerical technique were implemented. Numerical results for the detail of the velocity, temperature, and concentration profiles as well as heat transfer rates (Nusselt number) and mass transfer rates (Sherwood number) are presented in graphs.  相似文献   

15.
The effects of viscous dissipation on thermal entrance heat transfer in a parallel plate channel filled with a saturated porous medium, is investigated analytically on the basis of a Darcy model. The case of isothermal boundary is treated. The local and the bulk temperature distribution along with the Nusselt number in the thermal entrance region were found. The fully developed Nusselt number, independent of the Brinkman number, is found
to be 6. It is observed that neglecting the effects of viscous dissipation would lead to the well-known case of internal flows, with Nusselt number equal to 4.93. A finite difference numerical solution is also utilized. It is seen that the results of these two methods, analytical and numerical, are in good agreement.  相似文献   

16.
IntroductionTheproblemofforcedconvectioninaporousmediumchannelorductisaclassicalone (atleastforthecaseofslugflow (Darcymodel) .Therehasrecentlybeenrenewedinterestintheproblembecauseoftheuseofhyperporousmediainthecoolingofelectronicequipment.Recently ,NieldandBejan[1]refertomorethan 3 0papersonthetopic ,butnoneofthemdealsexplicitlywiththecaseofthermaldevelopment.ThisgapintheliteraturehasbeenpartlyfilledbyNieldetal.[2 - 4 ].Lahjomrietal.[5 ,6 ]havesolvedmathematicallysimilarproblemsbyusingthe…  相似文献   

17.
In this paper, the inertial and non-isothermal flow of viscoelastic fluids in a planar channel with 1:3 sudden expansion has been simulated for Brinkman numbers in the range \( - \,20 \le Br \le 20 \). The mass, momentum and energy conservation equations with the non-linear form of Phan-Thien–Tanner constitutive equation are used to describe the behavior of heated and cooled viscoelastic fluids flow. The properties of fluid are assumed temperature-dependent and the viscous dissipation terms are considered in the energy equation. The object of the current paper is to investigate the stresses and their effects on heat generation via the viscous dissipation terms in the energy equation for inertial flow of heated and cooled viscoelastic fluids. Therefore, plots of streamlines, isothermal lines, normal stress (\( \tau_{xx} \)), normal-transverse stress (\( \tau_{yy} \)) and shear stress (\( \tau_{xy} \)), total dissipation, temperature and local Nusselt numbers have been drawn and examined in the channel expansion. The results show that for the asymmetric flow of heated and cooled viscoelastic fluids, the maximum values of total dissipation are located adjacent to the lower wall and at the centerline of the channel expansion. Also, by incrementing the Brinkman number in the hydrodynamically and thermally developing and fully developed zones, the values of total dissipation are increased.  相似文献   

18.
A modified Graetz methodology is applied to investigate the thermal development of forced convection in a circular duct filled by a saturated porous medium, with walls held at constant temperature, and with the effects of longitudinal conduction and viscous dissipation included. The Brinkman model is employed. The analysis leads to expressions for the local Nusselt number, as a function of the dimensionless longitudinal coordinate and other parameters (Darcy number, Péclet number, Brinkman number).  相似文献   

19.
A numerical study of mixed convection in a vertical channel filled with a porous medium including the effect of inertial forces is studied by taking into account the effect of viscous and Darcy dissipations. The flow is modeled using the Brinkman–Forchheimer-extended Darcy equations. The two boundaries are considered as isothermal–isothermal, isoflux–isothermal and isothermal–isoflux for the left and right walls of the channel and kept either at equal or at different temperatures. The governing equations are solved numerically by finite difference method with Southwell–Over–Relaxation technique for extended Darcy model and analytically using perturbation series method for Darcian model. The velocity and temperature fields are obtained for various porous parameter, inertia effect, product of Brinkman number and Grashof number and the ratio of Grashof number and Reynolds number for equal and different wall temperatures. Nusselt number at the walls is also determined for three types of thermal boundary conditions. The viscous dissipation enhances the flow reversal in the case of downward flow while it counters the flow in the case of upward flow. The Darcy and inertial drag terms suppress the flow. It is found that analytical and numerical solutions agree very well for the Darcian model. An erratum to this article is available at .  相似文献   

20.
Forced convection heat transfer in a non-Newtonian fluid flow inside a pipe whose external surface is subjected to non-axisymmetric heat loads is investigated analytically. Fully developed laminar velocity distributions obtained by a power-law fluid rheology model are used, and viscous dissipation is taken into account. The effect of axial heat conduction is considered negligible. The physical properties are assumed to be constant. We consider that the smooth change in the velocity distribution inside the pipe is piecewise constant. The theoretical analysis of the heat transfer is performed by using an integral transform technique – Vodicka’s method. An important feature of this approach is that it permits an arbitrary distribution of the surrounding medium temperature and an arbitrary velocity distribution of the fluid. This technique is verified by a comparison with the existing results. The effects of the Brinkman number and rheological properties on the distribution of the local Nusselt number are shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号