首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallized poly(vinylidene fluoride) (PVDF) films can be etched into nondestructive evaluation (NDE) sensor devices. Since these sensors are relatively inexpensive, thin and lightweight, they can be attached permanently to adhesively bonded joints, laminated composites, and other structures to measure structural integrity. The present study has addressed techniques to design, attach, and utilize such sensors for adhesive joint and laminated composite applications. PVDF sensors have been successfully used as NDE transducers in pulse-echo, through-transmission, and acousto-ultrasonic techniques to monitor curing, and to detect porosity and crack propagation in different model joint geometries. Feasibility of several applications has been demonstrated, although several problems remain. The potential of using these techniques for practical bonded structures is also suggested.  相似文献   

2.
The panel-type structures used in aerospace engineering can be subjected to severe highfrequency acoustic loadings in service. This paper evaluates the frequency-dependent random fatigue of panel-type structures made of ceramic matrix composites(CMCs) under acoustic loadings. Firstly, the high-frequency random responses from the broadband random excitation will result in more stress cycles in a deinite period of time. The probability density distributions of stress amplitudes will be different in different frequency bandwidths, though the peak stress estimations are identical. Secondly, the fatigue properties of CMCs can be highly frequency-dependent. The fatigue evaluation method for the random vibration case is adopted to evaluate the fatigue damage of a representative stiffened panel structure. The frequency effect through S-N curves on random fatigue damage is numerically veriied. Finally, a parameter is demonstrated to characterize the mean vibration frequency of a random process, and hence this parameter can further be considered as a reasonable loading frequency in the fatigue tests of CMCs to obtain more reliable S-N curves.Therefore, the inluence of vibration frequency can be incorporated in the random fatigue model from the two perspectives.  相似文献   

3.
Acoustic emissions from reinforced concrete   总被引:3,自引:0,他引:3  
Acoustic emissions from reinforced-concrete beams, reinforcing bars and plain concrete cylinders were monitored. Acoustic-emission events were used in a study of source locations, frequency characteristics, and other analytical methods that have found use in the past for evaluating acoustic-emission data in other fields of engineering. Tests were done on reinforced-concrete beams under flexural loading, individual reinforcing bars under pure tension, concrete cylinders under compression, and reinforcing bars subject to pullout tests.The experimental data were first analyzed with conventional acoustic-emission methodology. A critical look at many acoustic-emission techniques currently used in other materials (metals, composites, etc.) demonstrated some of the difficulties of applying the same techniques to reinforced concrete. More importantly, it illustrated the limitations of signal processing and parameter estimation of acoustic-emission events as viable nondestructive-evaluation (NDE) techniques for reinforced-concrete structures. Subsequently, on the basis of the experimental results, some of the more promising aspects of developing acoustic emission into a structural monitoring tool are discussed.  相似文献   

4.
Weibull parameters of angular alumina particles are determined from experimental tensile test data on high-ceramic-content metal matrix composites using a micromechanical model that accounts for internal damage in the form of particle cracking, the dominant damage mode in these composites. The fraction of broken particles is assessed from the drop of Young's modulus and particle fracture is assumed to be stress controlled. Two extreme load-sharing modes, namely a purely local and a global load-sharing mode, are considered to account for the load redistribution due to particle fracture. Consistent powder strength parameters can be thus “back-calculated” for particles that are embedded in different Al-Cu matrices. On the other hand, this calculation fails for pure Al matrix composites, which exhibit a much larger strain to failure than Al-Cu matrix composites. It is shown that for Al matrix composites, the role of plastic (composite) strain on particle fracture constitutes a second parameter governing particle damage. This finding is rationalized by particle-particle interactions in these tightly packed ceramic particle-reinforced composites, and by the increase of matrix stress heterogeneity that is brought with increasing plastic strain. Failure of the alloyed matrix composites is well described by the (lower bound) local load-sharing micromechanical model, which predicts a catastrophic failure due to an avalanche of damage. The same model predicts failure of pure aluminium matrix composites to occur at the onset of tensile instability, also in agreement with experimental results once the role of plastic strain on damage accumulation is accounted for.  相似文献   

5.
材料力学性能退化的超声无损检测与评价   总被引:14,自引:0,他引:14  
材料性能退化总是伴随着某种形式的材料非线性力学行为, 从而引起超声波传播的非线性, 即高频谐波的产生.基于此,材料和结构的超声无损检测与主人技术发展成起来.首先介绍固体介质内的非线性超声波动方程的基础, 并综述了利用超声波传播的非线性特性对结构材料和粘结面的力学性能退化进行无损检测与评价的研究进展.之后对材料在疲劳、拉伸以及蠕变载荷作用下, 其力学性能退化进行超声无损检测与评价的试验研究进行了介绍;综述了超声波传播非线性的机理研究, 以及利用超声波对粘结面的粘结强度及其力学性能退化评估所开展的研究. 最后指出了今后该领域需要进一步研究的问题.   相似文献   

6.
A universal theory describing the wide range of mechanical and acoustic phenomena in solids with internal contacts such as rocks, concrete, ceramics and composites is quite complex to develop. The goal of this paper is to demonstrate the potential to deduce the macroscopic stress-strain constitutive equation for a material as a whole starting from the microscopic hysteretic force-displacement relationship of individual asperities in contact. The material considered in the proposed model contains a large number of isotropic oriented penny-shaped cracks with rough internal surfaces. The stress-strain relationship we obtained for such a material is based on physical principles and laws. Even so, it displays close resemblance to the phenomenological Preisach-Mayergoyz model adopted for mechanical hysteresis and nonlinearity. This constitutive relationship is then used to simulate an experiment with standing acoustic waves in a resonant bar, and to compare model predictions to actual observations. We show that the most important experimentally measurable nonlinear features of these materials, such as the typical classical and nonclassical shifting behavior of the resonant frequency, the dependencies of the amplitudes of the generated harmonics, the softening due to intensive straining, and the subsequent relaxation effect (slow dynamics) can be attributed and explained in terms of the mechanics and the statistics of the internal contacts. The present model bridges the gap between three scales: macroscopic (material as a whole), mesoscopic (structure of intergranular contacts and cracks) and microscopic scale (contacts of individual asperities).  相似文献   

7.
纺织结构复合材料冲击拉伸研究进展   总被引:2,自引:0,他引:2  
马丕波  蒋高明  高哲  夏栋 《力学进展》2013,43(3):329-357
纺织结构复合材料是以纺织结构作为增强体的一类复合材料, 其在一系列实际应用时往往要承受着高速冲击拉伸、冲击压缩等冲击载荷(冲击加载) 的作用. 因为纺织结构的整体性能, 纺织结构复合材料具有优异的抗冲击、抗分层与高损伤容限性能. 研究复合材料的冲击性能对于纺织结构复合材料的设计与应用具有指导作用. 本文详细介绍了纺织结构复合材料的发展, 纺织结构的种类及纺织结构复合材料的冲击拉伸性能实验与有限元分析研究情况, 同时也分析了纺织结构复合材料冲击拉伸破坏下的破坏机理研究进展, 并对纺织结构复合材料冲击拉伸性能研究的发展进行了展望.  相似文献   

8.
This paper deals with elastic and elastic–plastic singular fields around a crack-tip in particulate-reinforced composites with debonding damage of particle-matrix interface. Numerical analyses are carried out on a crack-tip field in elastic-matrix and elastic–plastic-matrix composites reinforced with elastic particles, using a finite element method developed based on an incremental damage theory of particulate-reinforced composites. A particle volume fraction and interfacial strength between particles and matrix of the composites are parametrically changed. In the elastic-matrix composites, a unique elastic singular field is created on the complete damage zone in the vicinity of a crack-tip in addition to the conventional elastic singular field on the no damage zone. The macroscopic stress level around a crack-tip is reduced by the debonding damage while the microscopic stress level of the matrix remains unchanged. In the elastic–plastic-matrix composites, the damage zone develops in addition to the plastic zone due to matrix plasticity, and both the macroscopic and microscopic stress revels around a crack-tip are reduced by the debonding damage. It is concluded from the numerical results that the toughening due to damage could be expected in the elastic–plastic-matrix composites, while it is questionable in the elastic-matrix composites.  相似文献   

9.
This paper is concerned with the analysis of elastic waves generated by localized dynamic sources in structural composites. The source can be external, involving acoustic wave loading as in the so called leaky Lamb wave experiment, and low-velocity foreign object impact on the surface of the structure, or internal, as in sudden crack initiation and its rapid growth from existing internal flaws. All three problems are of critical importance in the safe operation of composite structures, due to their vulnerability to hidden delaminations that can occur in composite materials when they are subjected to this type of loads. It is well known that both the dynamic surface loading associated with impact, and the sudden “opening” of an internal crack associated with the extension of a preexisting flaw act as sources of elastic waves in the material of the structure. The research reported here consists of model-based analysis of the guided waves generated by surface loading and microcrack initiation in graphite epoxy composite laminates commonly used in aircraft and aerospace structures. The objective of this study is to develop a mechanics based understanding of the causal relationship between the properties of the source and the characteristics of the waves generated by its initiation and propagation. The results of this research are expected to be useful in developing effective health monitoring systems for new as well as aging aircraft and aerospace structures.  相似文献   

10.
This paper presents acoustic emission (AE) monitoring of damage initiation and progression in carbon-fiber-reinforced-polymer (CFRP) stay cables subject to largescale laboratory tests. The research is part of the University of California, San Diego (UCSD), larger project on the design and construction of a new cable-stayed bridge made of advanced composites. No previous use of AE on large-size CFRP stay cables appears in the literature. Three types of cables of potential use in the UCSD composite bridge were tested at lengths ranging from 5500 mm to 5870 mm. The AE events were monitored to detect damage and provide a qualitative correlation with the type of structural failure. The tests allowed a comparative characterization of the failure behavior of the three types of cables under investigation. An additional study was performed to characterize acoustic attenuation and dispersion phenomena that are relevant to AE testing of largescale CFRP cables. It is shown that despite their large size, these cables are excellent acoustic wave guides exhibiting very low attenuation. Finally, this study shows promising results for an effective use of in situ AE for health monitoring of these structural components in service.  相似文献   

11.
The presented experimental work describes the nondestructive damage examination of polymer-matrix composites using acoustic methods under the consideration of nonlinear effects. The aim is to analyze these nonlinear effects in order to provide a quantification of the nonlinear acoustic transmission which is related to the damage state and its severity in the composite material. The first objective was to study the effectiveness of the distortion evaluation method and its related parameter: the “Total Difference Frequency Distortion” (TDFD) parameter. The TDFD was utilized as a new damage indicator to quantify the progressive damage state in composite materials. The TDFD method had initially been proposed to characterize the distortion of audio amplifiers. A custom-made setup was developed that imposes acoustic signals to the structure. The samples’ vibrations were afterwards analyzed by a laser vibrometer and further spectrum evaluations. The developed method was applied to two composite materials, both reinforced with taffeta woven glass-fibers, but having different thermoset polymer matrix, i.e. vinylester and epoxy. The damage was introduced in the specimen by tensile tests with a stepwise increase of the tension loading. It was observed that damage influences the intensity of nonlinear intermodulation after having introduced two harmonic and constant signals of different and randomly chosen frequencies in the specimen. The nonlinear intermodulation was then quantified by computing the TDFD parameter. In the specific case of epoxy based composites, high frequency peaks were noted for the high tensile loading levels only. The TDFD parameter was then modified in order to take into account this effect. For both studied composites, the modified TDFD parameter increases with the damage accumulation caused by the applied stepwise tensile loading.  相似文献   

12.
金属材料细观损伤过程伴随有瞬态应力波的释放,利用声发射检测技术可采集到应力波的信息,但由于缺少直观可视的手段,利用声发射信息定量评价金属材料的细观损伤存在困难。本文将SEMtester1000原位拉伸试验机、MZ1000正置显微镜和PCI-2型声发射检测系统相结合,搭建了声发射源动态观测实验系统。以Q235钢可视化原位拉伸实验为例,获取了晶体的滑移和夹杂物的断裂两种典型声发射源图像及对应的声发射信号。通过对不同声发射源信号的分析可知,滑移是一个持续的过程,复杂的滑移活动会产生多类型的声发射信号。夹杂物断裂是瞬态过程,产生典型的突发型声发射信号,能量较滑移信号更高。依据声发射源动态观察结果及图像分析,建立了基于声发射机制的Q235钢细观损伤模型。  相似文献   

13.
Effects of stress ratio on fatigue life of carbon-carbon composites   总被引:1,自引:0,他引:1  
Cyclic loading causes cumulative damage and therefore degrades the inelastic properties of composite materials. Present work investigates the damage development under tension-tension fatique, and the effect of stress ratio on the fatigue life of carbon-carbon (C/C) composites at room temperature at a frequency of 3 Hz. The fatigue damage has been identified through ultrasonic non-destructive technique, optical microscopy and scanning electron microscopy.From the S-N curve it has been observed that the endurance strength of C/C composite is quite high; approximately 85% of the ultimate tensile strength. The fatigue life of C/C composites has also been observed to increase with the stress ratio. Matrix cracks, filament splitting within the yarns, complete delamination and the nucleation of the interfacial flaws have been identified as the failure mechanisms during the fatigue tests. On the other hand, the failure modes during the static test were found to be complete fiber fracture accompanied by partial delamination. A statistical fatigue life distribution for carbon-carbon composites has also been presented in this paper.  相似文献   

14.
TECHNIQUE FOR NONDESTRUCTIVE EVALUATION OF BIOLOGICALLY DEGRADED WOOD   总被引:1,自引:0,他引:1  
Wood is a complex material that can be attacked and degraded by a wide range of biological organisms. The USDA Forest Service, Forest Products Laboratory (FPL), has been investigating the use of nondestructive evaluation (NDE) techniques to identify when degradation of wood occurs in the structure and the performance characteristics that remain in the structure. In particular, FPL's work has focused on using longitudinal stress wave NDE techniques for laboratory and field applications.  相似文献   

15.
The flexible phased array ultrasonic technology has been developed to tackle the long-term challenge of damage inspection in complex-profiled components. However, due to the influences of curved interfaces, it is sometimes difficult to control the transmission signal of the sound field, thereby creating unreliable transducer performances. This paper proposes the time delay laws for generating steering or focusing beams on curved surfaces (concave, convex, concave/convex) based on the ray acoustics theory. Then, we derive the analytic expression of the entire flexible array ultrasonic field based on the multiple line source model and the time delay laws. Finally, the acoustic pressure distribution of curved structures is simulated to verify the feasibility of the derived principles. The numerical results show that the beams can realize dynamic steering and focusing without distortions or disorientations even when the steering angle reaches 45 degrees. Furthermore, the influences of the specimen surface profile, steering angle and focusing distance on the acoustic field are also analyzed by the axial sound pressure plots. These preliminary results represent an essential step in the development of a nondestructive testing (NDT) system for inspecting components with complex surfaces.  相似文献   

16.
纤维增强复合材料的破坏机理   总被引:5,自引:0,他引:5  
纤维增强复合材料本身是一个非均匀各向异性力学结构。复合材料的研制、设计和使用都与力学密切相关。复合材料的破坏机理比金属材料复杂,不同组分的构成使其在加工中存在和使用中带来的缺陷比金属多。它的破坏机理与纤维、基体组分的性能,粘结强度,纤维铺设方向和顺序,工作条件等有关。需要采用有效的试验和分析方法,研究复合材料在不同   相似文献   

17.
声发射测试技术由于实时、连续、在线监测的特点,被越来越多地应用于材料性能的研究,但由于蠕变实验温度过高,超过传感器使用温度限制,因此在金属材料蠕变损伤领域还尚属空白。本文以Q345R钢为例,设计蠕变声发射监测专用的夹具导波机构,进行Q345R钢蠕变声发射监测实验。监测结果表明,蠕变损伤过程的声发射活动表现出与蠕变曲线相类似的阶段性特征。蠕变初期撞击数较多,声发射较为活跃;随着损伤的演进,试件进入稳态蠕变阶段,声发射活动渐趋平稳,日平均撞击数趋于稳定值;蠕变后期,能量快速释放,声发射活动加剧,试件发生蠕变断裂。  相似文献   

18.
A common theoretical framework can be employed for modelling both active and passive approaches to structural health monitoring based on guided waves. The same fundamental solutions can be used to represent the scattered field due to crack-like damage in an active approach, or the acoustic emission due to various failure mechanisms in a passive approach. It is shown that the reciprocal theorem can be used to derive compact analytical formulae for those fundamental solutions expressed as sums over the propagating modes. The only detailed calculations that are required are those involved in determining the relevant dispersion curves and through-thickness mode functions. For clarity, the approach is first described for two-dimensional configurations. The subsequent extension to three-dimensional requires the stationary phase approximation. It is shown that the modal coefficients for crack-like sources (or scatterers) are proportional to the conjugate stress component of the corresponding mode. Furthermore, the approach can also be used for an edge crack or delamination in a semi-infinite plate, and the theoretical formulae are compared with experimentally validated computational results for that case. Further extensions are briefly noted.  相似文献   

19.
Small elastic vibrations of two particulate composites that are caused by a non-plane time-harmonic wave are investigated. Effects of the adhesive interface and distinct periodic structures on the transmission and reflection of acoustic waves are rigorously analyzed. A two-scale asymptotic expansion with interfacial correctors is introduced to account for the macro- and micromechanical effects on wave propagation. An efficient algorithm is developed for computing first and second order corrections for the coefficients that depend on the composites microstructure and the interfacial constraint.  相似文献   

20.
???????????????о?   总被引:2,自引:0,他引:2  
木材声发射信号与其内外部损伤情况存在一定的定量关系. 依据损伤理论和含有裂 纹以及缺陷的木材不同阶段的声发射特征,分别探讨并建立了受交变载荷和单向静载荷情况下以声发 射特征参数表示的木材损伤演变模型. 分析结果与木材的实际情况相一致,表明以声发射特 征参量建立的木材损伤演变模型对木材的损伤预测具有提前性与敏感性,而且木材的不均匀 性是其提前破坏的主要原因之一.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号