首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The wetting problem of fluids on solid surfaces. Part 2: the contact angle hysteresis
Authors:Email author" target="_blank">Henri?GouinEmail author
Institution:(1) Laboratoire de Modélisation en Mécanique et Thermodynamique, Université drsquoAix-Marseille, 13397 Marseille Cedex 20, France
Abstract:In part 1 (Gouin, 13]), we proposed a model of dynamics of wetting for slow movements near a contact line formed at the interface of two immiscible fluids and a solid when viscous dissipation remains bounded. The contact line is not a material line and a Young-Dupré equation for the apparent dynamic contact angle taking into account the line celerity was proposed. In this paper we consider a form of the interfacial energy of a solid surface in which many small oscillations are superposed on a slowly varying function. For a capillary tube, a scaling analysis of the microscopic law associated with the Young-Dupré dynamic equation yields a macroscopic equation for the motion of the contact line. The value of the deduced apparent dynamic contact angle yields for the average response of the line motion a phenomenon akin to the stick-slip motion of the contact line on the solid wall. The contact angle hysteresis phenomenon and the modelling of experimentally well-known results expressing the dependence of the apparent dynamic contact angle on the celerity of the line are obtained. Furthermore, a qualitative explanation of the maximum speed of wetting (and dewetting) can be given.Received: 5 June 2001, Accepted: 24 May 2003, Published online: 29 July 2003PACS: 02.90, 47.50, 66.20, 68.03, 68.08
Keywords:contact angle  contact line  hysteresis
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号