首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A theoretical method for static analysis of naturally curved and twisted beams under complicated loads was presented, with special attention devoted to the solving process of governing equations which take into account the effects of torsion-related warping as well as transverse shear deformations. These governing equations, in special cases, can be readily solved and yield the solutions to the problem. The solutions can be used for the analysis of the beams, including the calculation of various internal forces, stresses, strains and displacements. The present theory will be used to investigate the stresses and displacements of a plane curved beam subjected to the action of horizontal and vertical distributed loads. The numerical results obtained by the present theory are found to be in very good agreement with the results of the FEM results. Besides, the present theory is not limited to the beams with a double symmetric cross-section, it can also be extended to those with arbitrary cross-sectional shape.  相似文献   

2.
This paper presents an efficient procedure for analyzing naturally curved and twisted beams with general cross-sectional shapes. The hypothesis concerning the cross-sectional shapes of the beams is abandoned in this analysis, and relatively general equations are derived for the analysis of such a structure. Solving directly such equations for various boundary conditions, which take into account the effects of torsion-related warping as well as transverse shear deformations, can yield the solutions to the problem. The solutions can be used to calculate various internal forces, stresses, strains and displacements of the beams. The present theory will be used to investigate the stresses and displacements of a cantilevered curved beam subjected to action of arbitrary load. The numerical results are very close to the FEM results.  相似文献   

3.
An incomplete generalized variational functional for naturally curved and twisted composite box beams with complete constrained boundaries at two ends is established by means of Lagrange multiplier method. The equations of motion governing the dynamic behavior of the beams and corresponding boundary conditions are derived from the stationary condition of the functional. The non-classical influences relevant to the beams are those due to transverse shear deformations, torsion-related warping and several elastic couplings that can arise in composite beams. In order to demonstrate the correctness of the theory developed the natural frequencies and normal mode shapes of the beams under in-plane free vibration are evaluated and compared with the results using PATRAN’s beam elements.  相似文献   

4.
基于Timoshenko梁及Benscoter薄壁杆件理论,建立了考虑剪切变形、弯扭耦合以及翘曲剪应力影响的空间任意开闭口薄壁截面梁单元. 通过引入单元内部结点,对弯曲转角和翘曲角采用三节点Lagrange独立插值的方法,考虑了剪切变形和翘曲剪应力的影响并避免了横向剪切锁死问题;借助载荷作用下薄壁梁的截面运动分析,在位移和应变方程中考虑了弯扭耦合的影响. 通过数值算例将该单元的计算结果与理论解以及商用有限元软件和其他文献中的数值解进行对比和验证,结果对比表明该薄壁梁单元具有良好的精度和收敛性.  相似文献   

5.
Shear deformable finite beam elements for composite box beams   总被引:3,自引:0,他引:3  
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress–strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.  相似文献   

6.
Timoshenko梁通过假设截面的剪切刚度和附加平均剪切转角变形的方式来近似修正初等梁中未考虑剪切变形能的问题,这与梁剪应力沿梁高变化的实际不符。本文基于材料力学剪应力计算式和相应的剪切变形理论,从剪切变形与梁的位移关系入手,导出矩形梁考虑剪切变形时的纵向位移沿梁高方向的函数关系式,证明该位移可分解为纯弯曲引起的位移和剪力引起的剪力滞翘曲位移之和。应用剪力滞广义坐标与广义力的概念,基于能量变分原理得到等截面梁剪力滞控制微分方程组及其通解形式。对均布荷载作用下矩形简支梁的算例分析表明,本文算法与弹性力学精确解对比,两者的应力和挠度剪力滞系数求解结果非常接近,本文算法有足够的精度,且比弹性力学简单。  相似文献   

7.
In this paper the dynamic analysis of 3-D beam elements restrained at their edges by the most general linear torsional, transverse or longitudinal boundary conditions and subjected in arbitrarily distributed dynamic twisting, bending, transverse or longitudinal loading is presented. For the solution of the problem at hand, a boundary element method is developed for the construction of the 14 × 14 stiffness matrix and the corresponding nodal load vector of a member of an arbitrarily shaped simply or multiply connected cross section, taking into account both warping and shear deformation effects, which together with the respective mass and damping matrices lead to the formulation of the equation of motion. To account for shear deformations, the concept of shear deformation coefficients is used, defining these factors using a strain energy approach. Eight boundary value problems with respect to the variable along the bar angle of twist, to the primary warping function, to a fictitious function, to the beam transverse and longitudinal displacements and to two stress functions are formulated and solved employing a pure BEM approach that is only boundary discretization is used. Both free and forced transverse, longitudinal or torsional vibrations are considered, taking also into account effects of transverse, longitudinal, rotatory, torsional and warping inertia and damping resistance. Numerical examples are presented to illustrate the method and demonstrate its efficiency and accuracy. The influence of the warping effect especially in members of open form cross section is analyzed through examples demonstrating the importance of the inclusion of the warping degrees of freedom in the dynamic analysis of a space frame. Moreover, the discrepancy in the dynamic analysis of a member of a spatial structure arising from the ignorance of the shear deformation effect necessitates the inclusion of this additional effect, especially in thick walled cross section members.  相似文献   

8.
The paper presents a theory for thin-walled, closed section, orthotropic beams which takes into account the shear deformation in restrained warping induced torque. In the derivation we developed the analytical (“exact”) solution of simply supported beams subjected to a sinusoidal load. The replacement stiffnesses which are independent of the length of the beam were determined from the exact solution by taking its Taylor series expansion with respect to the inverse of the length of the beam. The effect of restrained warping and shear deformation was investigated through numerical examples.  相似文献   

9.
The higher-order theory is extended to functionally graded beams (FGBs) with continuously varying material properties. For FGBs with shear deformation taken into account, a single governing equation for an auxiliary function F is derived from the basic equations of elasticity. It can be used to deal with forced and free vibrations as well as static behaviors of FGBs. A general solution is constructed, and all physical quantities including transverse deflection, longitudinal warping, bending moment, shear force, and internal stresses can be represented in terms of the derivatives of F. The static solution can be determined for different end conditions. Explicit expressions for cantilever, simply supported, and clamped-clamped FGBs for typical loading cases are given. A comparison of the present static solution with existing elasticity solutions indicates that the method is simple and efficient. Moreover, the gradient variation of Young’s modulus and Poisson’s ratio may be arbitrary functions of the thickness direction. Functionally graded Rayleigh and Euler–Bernoulli beams are two special cases when the shear modulus is sufficiently high. Moreover, the classical Levinson beam theory is recovered from the present theory when the material constants are unchanged. Numerical computations are performed for a functionally graded cantilever beam with a gradient index obeying power law and the results are displayed graphically to show the effects of the gradient index on the deflection and stress distribution, indicating that both stresses and deflection are sensitive to the gradient variation of material properties.  相似文献   

10.
Presented here is a new derivation of shear correction factors for isotropic beams by matching the exact shear stress resultants and shear strain energy with those of the equivalent first-order shear deformation theory. Moreover, a new method of deriving in-plane and shear warping functions from available elasticity solutions is shown. The derived exact warping functions can be used to check the accuracy of a two-dimensional sectional finite-element analysis of central solutions. The physical meaning of a shear correction factor is shown to be the ratio of the geometric average to the energy average of the transverse shear strain on a cross section. Examples are shown for circular and rectangular cross sections, and the obtained shear correction factors are compared with those of Cowper (1966) . The energy-averaged shear representative is also used to derive Timoshenkos beam theory.  相似文献   

11.
王兆强  赵金城 《力学学报》2011,43(5):963-967
以Vlasov薄壁构件理论为基础, 推导了开口薄壁构件一阶扭转理论. 该理论考虑了翘曲剪应力对截面转角的影响, 截面的转角分为自由翘曲转角和约束剪切转角, 在约束扭转中, St.Venant扭矩仅仅与自由翘曲转角有关, 而翘曲扭矩仅与约束剪切转角有关. 利用半逆解方法求出了约束扭转中薄壁构件的St.Venant扭矩表达公式; 依据能量方法, 建立了约束剪切转角和翘曲扭矩之间的关系, 并提出了翘曲剪切系数概念, 给出了一阶扭转理论的微分方程. 为了有效求解微分方程, 给出了求解微分方程的初参数法方程和相应的影响函数矩阵; 当St.Venant扭矩可以忽略时, 得到与一阶弯曲理论(Timoshenko梁理论)相似的一阶扭转理论简化形式. 最后利用算例证明了一阶扭转理论和简化理论的有效性.   相似文献   

12.
厚度效应对梁冲击响应的影响   总被引:2,自引:0,他引:2  
用一种半解析法——间接模态叠加法,研究了质点与弹性力学梁的冲击问题,这种方法避免了具有未知奇异载荷项的平衡微分方程求解问题。由于可以用解析方法得到简支弹性力学梁的模态函数,并且能够以显式形式给出其频率方程,因此以质点与简支弹性力学梁的冲击问题为例,来考察厚度效应对瞬态响应的影响,并将所得结果与用Timoshenko梁理论所得结果进行了比较,说明了厚度效应在梁冲击问题中的重要影响。讨论了纵波和剪切波对撞击力等动力响应的影响。  相似文献   

13.
唐媛  卿海 《应用力学学报》2020,(2):785-792,I0023
基于修正偶应力理论及表面弹性理论,本文提出了一种新的双曲线剪切变形梁模型,用于均匀微尺度梁的静态弯曲分析。该理论可以直接利用本构关系获得横向剪切应力,满足梁顶部和底部的无应力边界条件,避免了引入剪切修正因子。根据广义Young-Laplace方程建立了梁的内部与表面层的应力连续性条件,单一的变量场可以描述梁的位移模式。通过在位移场中考虑表面层厚度以及表面层的应力连续条件,可以使新模型能够更准确地预测微尺寸和表面能相关的尺度效应。通过Hamilton原理推导出了梁的控制方程和边界条件。应变能除了考虑经典弹性理论,还要考虑微结构效应和表面能。Navier-type的解析解适用于简支边界条件,而基于拉格朗日插值的微分求积法(DQEM)可以研究在不同边界条件下的力学响应。把该数值解与Navier方法得出的解析解作了对比,得出:微尺度梁在考虑表面能或微尺寸效应、不同载荷和梁高变化下的响应一致;当不考虑微结构相关性和表面能效应时,该模型退化为经典的欧拉梁模型。  相似文献   

14.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。  相似文献   

15.
In this paper, a new composite thin wall beam element of arbitrary cross-section with open or closed contour is developed. The formulation incorporates the effect of elastic coupling, restrained warping, transverse shear deformation associated with thin walled composite structures. A first order shear deformation theory is considered with the beam deformation expressed in terms of axial, spanwise and chordwise bending, corresponding shears and twist. The formulated locking free element uses higher order interpolating polynomial obtained by solving static part of the coupled governing differential equations. The formulated element has super convergent properties as it gives the exact elemental stiffness matrix. Static and free vibration analyses are performed for various beam configuration and compared with experimental and numerical results available in current literature. Good correlation is observed in all cases with extremely small system size. The formulated element is used to study the wave propagation behavior in box beams subjected to high frequency loading such as impact. Simultaneous existence of various propagating modes are graphically captured. Here the effect of transverse shear on wave propagation characteristics in axial and transverse directions are investigated for different ply layup sequences.  相似文献   

16.
Large amplitude periodic forced vibration of curved beams under periodic excitation is investigated using a three-noded beam element. The element is based on the higher-order shear deformation theory satisfying interlayer continuity of displacements and transverse shear stress, and top-bottom conditions on the latter. The periodic responses are obtained using shooting technique coupled with Newmark time marching and arc length continuation algorithm developed. The second order governing differential equations of motion are solved without transforming to the first order differential equations thereby resulting in a computationally more efficient algorithm. The effects of excitation amplitude, support conditions and beam curvature on the frequency versus response amplitude relation are highlighted. The typical frequency response curves for isotropic and cross-ply laminated curved beams are presented. Phenomenon of strong modal interactions is observed.  相似文献   

17.
A beam theory for the stability analysis of short beam that includes shear deformation and warping of the cross-section is developed. The warping of the cross-section is taken to be an independent kinematics quantity and corresponding force resultants are defined. For the beam subjected to the external loading only at the ends of the beam, equilibrium equations have been obtained by the principle of virtual work. The variations of lateral displacement, rotational angle of the cross-section and the multiplier of the warping shape along the beam axis are solved in closed form and expressed in terms of deformation quantities at the ends of the beam. Based on this beam theory, the lateral stiffness of the beam sustained an axial compression force and a lateral shear force at one end is explicitly derived, from which the equation of the buckling load is established and the buckling load can be solved. When the effect of cross-section warping is neglected, the derived lateral stiffness and buckling load converge to the solutions of the Haringx theory.  相似文献   

18.
The contact problem of a straight orthotropic beam pressed onto a rigid circular surface is considered using beam theories that account for transverse shear and transverse normal deformations. The circular nature of the rigid surface emphasizes the difference between Euler Bernoulli theory behavior, where point loads develop at the edge of contact, and the higher order theories that predict non-singular pressure distributions. While Timoshenko beam theory is the simplest theory that addresses this behavior, the prediction of a maximum value of pressure at the edge of contact contradicts the elasticity theory result that contact pressure must drop to zero. Transverse normal strain is therefore introduced, both to study this fundamental discrepancy and to include an important effect in many contact problems. To investigate this effect, higher order beam theories that account for both constant and linear transverse normal strain through the beam thickness are derived using the principle of virtual work. The resulting orthotropic beam theories depend on the bending stiffness (EI), shear stiffness (GA), axial stiffness (EA1) and transverse normal stiffness (EA2), which are independent stiffness parameters that can differ by orders of magnitude. The above mentioned contact problem is then solved analytically for these theories, along with the Timoshenko beam model which assumes zero transverse normal strain. The results for different orthotropic materials show that inclusion of transverse normal deformation has a significant effect on the contact pressure solution. Furthermore, the solution using higher order beam theories encompasses the two extremes of a Hertz-like contact pressure when the half contact length is smaller than the thickness of the beam, and the Timoshenko beam theory case when the half contact length is much larger than the thickness. Concerning the behavior of the pressure at the edge of contact, adherence to the boundary conditions required by the principle of virtual work, shows that while the pressure does tend to zero, it does not become zero unless artificially enforced. In this regard the solution for the case of linear strain is better than that for constant strain. All beam solutions are validated with plane elasticity solutions obtained using the commercial finite element software ABAQUS.  相似文献   

19.
Here, the large amplitude free flexural vibrations of isotropic/laminated orthotropic rings are investigated, using a shear flexible curved beam element based on field consistency principle. A laminated refined beam theory is introduced for developing the element, which satisfies the interface transverse shear stress and displacement continuity, and has a vanishing shear stress on the inner and outer surfaces of the beam. The formulation includes in-plane and rotary inertia effects, and the non-linearity due to the finite deformation of the ring. The governing equations obtained using Lagrange's equations of motion are solved through the direct integration technique. Amplitude-frequency relationships evaluated from the dynamic response history are examined. Detailed numerical results are presented considering various parameters such as radius-to-thickness ratio, circumferential wave number and ovality for isotropic and laminated orthotropic rings. The nature and degree of the participation of various modes in non-linear asymmetric vibration of oval ring brought out through the present study are useful for accurate modelling of the closed non-circular structures.  相似文献   

20.
将箱形梁腹板剪切变形纳入初等梁挠曲变形,在全截面上引入剪力滞翘曲修正系数,重新定义了剪力滞翘曲位移模式。选取剪力滞效应引起的附加挠度为广义位移,计算外力势能时考虑剪力滞广义位移的影响,应用能量变分法建立了反映剪力滞和剪切效应的控制微分方程,并导出了均布荷载作用下简支箱梁和两跨连续箱梁剪力滞和剪切效应附加挠度的解析解。数值算例表明,本文方法计算的总挠度值与有限元数值解吻合良好,从而验证了本文方法的合理性。算例箱梁剪切附加挠度明显大于剪力滞附加挠度;简支箱梁跨中截面的剪切和剪力滞附加挠度分别占初等梁挠度的2.50%和1.97%,两跨连续箱梁距中支点9l/16截面分别占27.45%和16.87%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号