首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
研究了周边具有面内径向弹性约束功能梯度圆板在横向非均匀升温下的热过屈曲行为.基于von Karman薄板理论,推导出了横向非均匀加热功能梯度圆板在径向弹性约束作用下的位移形式的轴对称热过屈曲控制方程.假设功能梯度材料性质沿厚度方向按幂函数连续变化,采用打靶法求解得到非线性常微分方程边值问题,获得了周边简支和夹紧条件下功能梯度圆板的热过屈曲响应.定量分析了径向弹性约束对圆板的临界屈曲温度载荷以及热过屈曲变形的影响,给出了不同弹性约束刚度功能梯度圆板的热过屈曲平衡路径和平衡构形.数值结果表明,径向弹性约束对圆板的热过屈曲平衡路径的影响显著,随着约束刚度的减小,临界屈曲温度载荷增大.  相似文献   

2.
本文讨论考虑横向剪切变形的各向同性、正交各向异性矩形板的屈曲和后屈曲性态。应用Reissner理论,采用文[1]提供的摄动方法,给出了完善和非完善各向同性、正交各向异性矩形板的后屈曲平衡路径,并与薄板理论结果作了比较。  相似文献   

3.
本文是在矩形板后屈曲平衡路径已经确定的基础上,运用能量法和参数摄动法研究矩形板二次屈曲和二次分枝点的问题。本文提出用特征方程描述矩形板二次屈曲的方法,对具有后屈曲稳定性态弹性结构的二次屈曲分析有一定的普遍意义。  相似文献   

4.
本文是文[1,2]工作的继续,给出了非完善正交异性复合矩形板在面内双向压缩作用下后屈曲平衡路径渐近表达式。  相似文献   

5.
基于von Karman薄板理论推导了均匀升温下的弹性圆(环)板受到侧向间隙点约束作用前后的轴对称热过屈曲方程.点约束位于圆(环)板圆心处的侧向两侧,且间隙值在板的热过屈曲变形范围内.控制方程是一组以中面位移为基本未知量,以温度载荷为参数,接触后约束条件改变的非线性常微分方程组.采用打靶法数值求解所得方程,获得了周边不可移夹紧和简支圆(环)板在接触前后的热过屈曲响应.着重研究了圆(环)板受到点约束作用后的过屈曲变形和内力的变化情况,分析了环板内外半径比及边界条件的影响,给出了有关的平衡构形和平衡路径.  相似文献   

6.
研究了温度场中非保守功能梯度材料(FGM)圆板的非线性力学行为。基于经典板理论,推导了受非保守力作用的FGM圆板在温度场中的控制微分方程。采用打靶法分析了由陶瓷二氧化锆和金属钛合金两相材料组成的非保守FGM圆板在均匀和非均匀升温场中的非线性力学行为。给出了不同均匀升温和非均匀升温场下,FGM圆板在非保守载荷作用下的平衡路径和平衡构形。分析并讨论了均匀和非均匀升温、材料梯度指数对非保守圆板过屈曲和弯曲行为的影响。结果表明:温度场中,非保守FGM圆板发生弯曲而纯陶瓷圆板会发生过屈曲行为;当梯度指数p=2,非保守载荷q=52时,均匀升温场中非保守圆板的变形大于非均匀升温场中非保守圆板的变形。  相似文献   

7.
本文以Thompson一般稳定性理论为基础,提出非完善结构(有初始几何缺陷)屈曲平衡路径分析的有限元增量摄动法,它克服了增量迭代法及摄动法各自的缺点,利用增量摄动法,还建立了非完善板屈曲平衡路径的数学分析模型,对非完善矩形板在各种边界条件下的屈曲路径实现了数值程序分析,得到了符合实验的结果。  相似文献   

8.
为分析表面效应对多孔梁在轴向压力下的屈曲和后屈曲行为的影响,使用Gurtin–Murdoch表面弹性理论,建立了轴向可伸长梁的非线性后屈曲控制微分方程。其中假设梁的孔隙分布在其厚度上具有对称和非对称的两种非均匀模式。采用打靶法数值求解,给出了不同孔隙率系数下多孔纳米梁发生屈曲的临界载荷和后屈曲平衡路径曲线,讨论了表面材料特性对后屈曲行为的影响。结果表明:纳米梁具有十分显著的表面效应,表面效应对多孔纳米梁的屈曲和后屈曲行为有重要影响。  相似文献   

9.
无拉力弹性地基上矩形薄板的屈曲/后屈曲问题是板壳力学中一类重要课题,在工程中有着大量应用.因涉及接触非线性,目前主要采用数值方法对该类问题进行求解,发展具有重要基准价值的解析方法是当前面临的一项挑战.针对上述问题,本文将板划分为若干包含强制边界条件的板,形成子问题,在辛空间下利用分离变量与辛本征展开对子问题进行解析求解,通过子问题边界处的连续条件确定板与地基的接触状态;通过迭代求解上述过程,获得子问题划分的收敛结果,并得到最终屈曲载荷及模态.结果表明,无拉力弹性地基与Winkler地基上板的屈曲行为存在显著差异,且无拉力弹性地基的刚度对板的屈曲载荷与屈曲模态均有重要影响.在此基础上,结合Koiter摄动法与辛方法,对无拉力弹性地基上矩形板的后屈曲问题进行求解,获得板的后屈曲平衡路径.所得到的屈曲与后屈曲分析结果均与有限元计算结果吻合良好,确认了本文结果的正确性.由于本文方法数学推导严格,求解效率高,因此不仅为研究无拉力弹性地基上矩形薄板的屈曲/后屈曲行为提供了一种有价值的理论工具,更有望拓展至更多复杂板壳力学问题的求解.  相似文献   

10.
非惯性参考系中板的非线性振动分析   总被引:1,自引:0,他引:1  
给出了弹性变形体处于非惯性参考系中的运动描述,基于Hamilton原理建立了中厚矩形板在空间运动中的动力学一般方程,应用多尺度法及谐波平衡法具体地分析了简支矩形板在空间运动中的非线性振动问题。  相似文献   

11.
ABSTRACT

A postbuckling analysis is presented for a moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading, and resting on a softening nonlinear elastic foundation. The cases of (1) thermal postbuckling of initially compressed plates and (2) compressive post-buckling of initially heated plates are considered. The initial geometrical imperfections of the plates are taken into account. Formulations are based on Reissner-Mindlin plate theory, considering first-order shear deformation effects, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples include the performance of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. Typical results are presented in dimensionless graphical form.  相似文献   

12.
A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to (1) uniform and non-uniform tent-like temperature loading; and (2) combined axial compression and uniform temperature loading. The initial geometrical imperfection of plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the effects of rotary inertia and transverse shear deformation. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick rectangular plates and are compared with the results predicted by the thin plate theory.  相似文献   

13.
This paper presents a study on the postbuckling responses of shear deformable laminated plates resting on a tensionless foundation of the Pasternak-type and subjected to combined axial and thermal loads. Two different postbuckling cases are considered, namely (1) the compressive postbuckling of initially heated plates and (2) the thermal postbuckling of initially compressed plates. The postbuckling analysis of laminated plates is based on the higher order shear deformation plate theory with a von Kármán-type of kinematic non-linearity. It is assumed that the foundation reacts in compression only. The thermal effects are also included and the material properties are assumed to be temperature dependent. The initial geometric imperfection of the plates is taken into account. The analysis uses a two-step perturbation technique to determine the postbuckling response of the plates. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region. Numerical solutions are presented in tabular and graphical forms to study the postbuckling behavior of antisymmetric angle-ply and symmetric cross-ply laminated plates resting on tensionless elastic foundations of the Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral constraint has a significant effect on the postbuckling response of the plates subjected to combined axial and thermal loads when the foundation stiffness is sufficiently large. The results also confirm that the postbuckling responses are significantly influenced by temperature dependency and initial membrane stress as well as initial thermal stress.  相似文献   

14.
The postbuckling deflection of an infinite beam that is bonded to a linear elastic foundation and is subjected to an internal compressive stress is analyzed. The nonlinear equilibrium equation that governs the problem considers extensional deformation of the beam. An analytic solution of the nonlinear equilibrium equation is presented and is found to be in good agreement with numerical simulations of the problem. The numerical simulations confirm that for a linear elastic foundation the postbuckling deflection is periodic. The analytic solution shows that the postbuckling wavelength is unaffected by the level of internal stress, and is equal to the wavelength at the critical state.  相似文献   

15.
This paper presents a study on the postbuckling response of a functionally graded cylindrical shell of finite length embedded in a large outer elastic medium and subjected to internal pressure in thermal environments. The surrounding elastic medium is modeled as a tensionless Pasternak foundation that reacts in compression only. The postbuckling analysis is based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. The thermal effects due to heat conduction are also included and the material properties of functionally graded materials (FGMs) are assumed to be temperature-dependent. The nonlinear prebuckling deformations and the initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the postbuckling response of the shells and an iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region between the shell and the elastic medium. Numerical solutions are presented in tabular and graphical forms to study the postbuckling behavior of FGM shells surrounded by an elastic medium of tensionless elastic foundation of the Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results reveal that the unilateral constraint has a significant effect on the postbuckling response of shells subjected to internal pressure in thermal environments when the foundation stiffness is sufficiently large.  相似文献   

16.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

17.
Buckling and postbuckling of moderately thick plates   总被引:1,自引:0,他引:1  
This paper gives the basic differential equations for finite deflections of elastic plates according to Reissner’s approximate stress distributions. The buckling and postbuckling problems of elastic rectangular plates, including the effect of transverse shear deformation, are solved and discussed, by using perturbation method suggested in ref. [8]. The postbuckling equilibrium paths of perfect and imperfect moderately thick rectangular plates are presented and compared with the results based on thin plate theory.  相似文献   

18.
This paper deals with the large amplitude vibration, non-linear bending and postbuckling of fiber reinforced composite laminated plates resting on an elastic foundation in hygrothermal environments. Two kinds of fiber reinforced laminated plates, namely, uniformly distributed and functionally graded reinforcements, are considered. The material properties of fiber reinforced laminated plates are estimated through a micromechanical model and are assumed to be temperature-dependent and moisture-dependent. The motion equations are based on a higher order shear deformation plate theory that includes plate-foundation interaction and the hygrothermal effect. A two-step perturbation technique is employed to determine the non-linear to linear frequency ratios of plate vibration, the load-deflection and load-bending moment curves of plate bending, and postbuckling equilibrium paths of laminated plates.  相似文献   

19.
Rectangular plates resting on elastic foundations are operational activities of large transportation aircraft on runways, footings, foundation of spillway dam, civil building in cold regions, and bridge structures. Hence, in the present work, nonlinear bending analysis of embedded rectangular plates is investigated based on orthotropic Mindlin plate theory. The elastic medium is simulated by orthotropic Pasternak foundation. Adopting the nonlinear strain–displacement relation, the governing equations are derived based on energy method and Hamilton’s principle. The generalized differential quadrature method is performed for the case when all four ends are clamped supported. The influences of the plate thickness, shear-locking, elastic medium constants, and applied force on the nonlinear bending of the rectangular plate are studied. Results indicate that increasing the plate thickness decreases the deflection of the plate. It is also observed that increasing the applied force increases the deflection of the plate. Furthermore, considering elastic medium decreases deflection of the plate, and the effect of the Pasternak-type is higher than the Winkler-type on the maximum deflection of the plate. Also, it is found that the present results have good agreement with previous researches.  相似文献   

20.
Buckling and postbuckling analysis is presented for a double-walled carbon nanotube subjected to combined axial and radial loads in thermal environments. The analysis is based on a continuum mechanics model in which each tube of a double-walled carbon nanotube is described as an individual orthotropic shell with presence of van der Waals interaction forces and the interlayer friction is negligible between the inner and outer tubes. The governing equations are based on higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics simulations, and initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, double-walled carbon nanotubes subjected to combined axial and radial mechanical loads under different sets of thermal environments. The results reveal that temperature change only has a small effect on the postbuckling behavior of the double-walled carbon nanotube. The axially-loaded double-walled carbon nanotube subjected to radial pressure has an unstable postbuckling path, and the structure is imperfection–sensitive. In contrast, the pressure-loaded double-walled carbon nanotube subjected to axial compression has a very weak “snap-through” postbuckling path, and the structure is virtually imperfection–insensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号