首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文利用单个平片裂纹的基本解,将三维有限体中的平片裂纹问题,归为解一组超奇异积分方程,然后使用主部分析方法,对这组方程的求解作了理论分析,其结果在本文的第Ⅰ部分给出,关于这组方程的数值法求解,则给出于本文的第Ⅱ部分。  相似文献   

2.
In this note, integral equations for the problem of an internal plane crack of arbitrary shape in a three-dimensional elastic half-space are derived. The crack plane is assumed to beparallel to the free surface. Use is made of Mindlin's point force solution in the interior of a semi-infinite solid in deriving the integral equations for the problem.  相似文献   

3.
The propagation of harmonic elastic wave in an infinite three-dimensional matrix containing an interacting low-rigidity disk-shaped inclusion and a crack. The problem is reduced to a system of boundary integral equations for functions that characterize jumps of displacements on the inclusion and crack. The unknown functions are determined by numerical solution of the system of boundary integral equations. For the symmetric problem, graphs are given of the dynamic stress intensity factors in the vicinity of the circular inclusion and the crack on the wavenumber for different distances between them and different compliance parameters of the inclusion.  相似文献   

4.
A three-dimensional crack problem in electromagnetothermoelastic multiphase composites (EMTE-MCs) under extended loads is investigated in this paper. Using Green’s functions, the extended general displacement solutions are obtained by the boundary element method. This crack problem is reduced to solving a set of hypersingular integral equations coupled with boundary integral equations, in which the unknown functions are the extended displacement discontinuities. Then, the behavior of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of hypersingular integral equations. Analytical solutions for the extended singular stresses, the extended stress intensity factors (SIFs) and the extended energy release rate near the crack front in EMTE-MCs are provided. Also, a numerical method of the hypersingular integral equations for a rectangular crack subjected to extended loads is put forward with the extended displacement discontinuities approximated by the product of basic density functions and polynomials. In addition, distributions of extended SIFs varying with the shape of the crack are presented. The results show that the present method accurately yields smooth variations of extended SIFs along the crack front.  相似文献   

5.
In this paper the anti-plane problem for an interface crack between two dissimilar magneto-electro-elastic plates subjected to anti-plane mechanical and in-plane magneto-electrical loads is investigated. The interface crack is assumed to be either magneto-electrically impermeable or permeable, and the position of the interface crack is arbitrary. The finite Fourier transform method is employed to reduce the mixed boundary-value problem to triple trigonometric series equations. The dislocation density functions and proper replacement of the variables are introduced to reduce these series equations to a standard Cauchy singular integral equation of the first kind. The resulting integral equation together with the corresponding single-valued condition is approximated as a system of linear algebra equations which can be easily solved. Field intensity factors and energy release rates are determined numerically and discussed in detail. Numerical results show the effects of crack configuration and loading combination parameters on the fracture behaviors of crack tips according to energy release rate criterion. The study of this problem is expected to have applications to the investigation of dynamic fracture properties of magneto-electro-elastic materials with cracks.  相似文献   

6.
The Somigliana formula is used to reduce an arbitrary elastic crack problem to a system of three integral equations for the components of displacement discontinuity. For the case of a penny shaped crack situated in an infinite isotropic medium with the crack faces subjected to arbitrary tractions, the integral equations are solved explicitly. In particular integral formulae are obtained for the stresses on the plane of the crack beyond the crack-tip, and hence for the stress intensity factors. The special case of uni-directional shear traction on the crack is examined.  相似文献   

7.
A flat annular crack in a piezoelectric layer subjected to electroelastic loadings is investigated under electrically impermeable boundary condition on the crack surface. Using Hankel transform technique, the mixed boundary value problem is reduced to a system of singular integral equations. With the aid of Gauss-Chebyshev integration technique, the integral equations are further reduced to a system of algebraic equations. The field intensity factor and energy release rate are determined. Numerical results reveal the effects of electric loadings and crack configuration on crack propagation and growth. The results seem useful for design of the piezoelectric structures and devices of high performance.  相似文献   

8.
The solution of a dynamic problem for calculation of a displacement field on a half-space surface caused by an internal mode I crack opening is presented. The problem is reduced to the system of boundary integral equations (BIEs). The equations of motion are solved with the use of Helmholtz potentials and applying Fourier integral transform. The effects of the crack size, the crack depth and the distance from the crack epicenter to the observation point on the parameters of elastic waves are investigated. It is established that the increasing of the defect size leads to narrowing bandwidth of elastic waves and to lowering of center frequency. The analysis given here can be used for identification of the crack growth during technical diagnostic of an industry objects and structural elements by AE method.  相似文献   

9.
IntroductionWiththedevelopmentofparticleandfiberreinforcedcomposites,theinclusion_crackinteractionproblemisbecominganimportantfieldbeingstudied .Andasamodel,itisalsousedtostudytheeffectsofmaterialdefectsonthestrengthandfractureofengineeringstructure.TheinterationbetweencircularinclusionandcrackwasstudiedinRefs.[1 -6 ] ;InRefs.[7-1 2 ] ,theinterationbetweenlineinclusionandcrackswasdiscussed ;TheinterationbetweenellipticalinclusionandcrackwasstudiedinRefs.[1 3,1 4] .However,withthedevelopmento…  相似文献   

10.
In an attempt to simulate non-uniform coating delamination, the elasto-static problem of a penny shaped axisymmetric crack embedded in a functionally graded coating bonded to a homogeneous substrate subjected to crack surface tractions is considered. The coating’s material gradient is parallel to the axisymmetric direction and is orthogonal to the crack plane. The graded coating is modeled as a non-homogeneous medium with an isotropic constitutive law. Using Hankel transform, the governing equations are converted into coupled singular integral equations, which are solved numerically to yield the crack tip stress intensity factors. The Finite Element Method was additionally used to model the crack problem. The main objective of this paper is to study the influence of the material non-homogeneity and the crack position on the stress intensity factors for the purpose of gaining better understanding on the behavior of graded coatings.  相似文献   

11.
The problem of a Griffith crack of constant length propagating at a uniform speed in a plane non-homogeneous medium under uniform load is investigated. The equilibrium equations for the non-homogeneous medium are solved by using the Fourier transforms and then the problem is reduced to the solution of dual integral equations. Solving the dual integral equations we obtain the expression for the dynamic stress intensity factor at the edge of the crack. Finally the numerical results for the stress intensity factor are obtained which are displayed graphically to show the effect of the material non-homogeneity on the stress intensity factor.  相似文献   

12.
通过对耦合的波动方程和方程解耦,用自模拟方法研究了压电材料中反平面裂纹的自相似扩展问题。研究表明:对反平面问题,介质内的耦合场与裂纹扩展速度有关,在裂纹尖端有r^-1/2阶的奇异性;动态应力强度因子与电位称载荷有关,与静态结论不同;电位移强度因子与机械载 荷无关,与静态结果的表达形式一致。  相似文献   

13.
Li  X.-F. 《Meccanica》2003,38(3):309-323
The problem of an interface crack in a half-plane consisting of two bonded dissimilar piezoelectric quarters is considered under antiplane shear and inplane electric loading. The problem is solved under the electrically permeable assumption for a crack. The integral transform technique is employed to reduce the problem to triple integral equations, which is further converted to a hypersingular integral equation for the crack sliding displacement. By solving the resulting equation analytically, the electroelastic field along the interface and the energy release rate are obtained in explicit form, respectively. Several examples are given to illustrate the influence of the material properties and the crack position on the energy release rate.  相似文献   

14.
The singular stress problem of a peripheral edge crack around a spherical cavity in a long circular cylinder under torsion is investigated. The problem is solved by using integral transforms and is reduced to the solution of two integral equations. The solution of these equations is obtained numerically by the method due to Erdogan, Gupta, and Cook, and the stress intensity factors, and crack opening displacements are displayed graphically.  相似文献   

15.
In this paper, a mixed electric boundary value problem for a two-dimensional piezoelectric crack problem is presented, in the sense that the crack face is partly conducting and partly impermeable. By the analytical continuation method, the unknown electric charge distributions on the upper and lower conducting crack faces are reduced to two decoupled singular integral equations and then these two equations are converted into algebraic equations to find the full field solution. Though the results suggest that the stress intensity factors at the crack tip are identical to those of conventional piezoelectric materials, but the electric field and electric displacement are related to the electric boundary conditions on the crack faces. The electric field and electric displacement are singular not only at crack tips but also at the junctures between the impermeable part and conducting parts. Numerical results for the variations of the electric field, electric displacement field and J-integral with respect to the normalized impermeable crack length are shown. Some discussions for the energy release rate and the J-integral are made.  相似文献   

16.
The torsional problem of a finite elastic cylinder with a circumferential edge crack is studied in this paper. An efficient solution to the problem is achieved by using a new form of regularization applied to dual Dini series equations. Unlike the Srivastav approach, this regularization transforms dual equations into a Fredholm integral equation of the second kind given on the crack surface. Hence, exact asymptotic expansions of the Fredholm equation solution, the stress intensity factor and the torque are derived for the case of a shallow crack. The asymptotic expansions are certain power-logarithmic series of the normalized crack depth. Coefficients of these series are found from recurrent relations. Calculations for a shallow crack manifest that the stress intensity factor exhibits the rather weak dependence upon the cylinder length when the torque is fixed and the triple length is larger than the diameter.  相似文献   

17.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

18.
Steady-state anisotropic thermoelasticity equations are used to obtain the stress intensity factors for a cracked layer sandwiched between two different anisotropic elastic solids. The anisotropy is assumed to arise from discrete fibers whose orientation could alter with reference to the crack edges. A generalized plane deformation prevails in the dissimilar media domain with a line of discontinuity disturbing a uniform heat flow. The flexibility/stiffness matrix approach is used such that the crack problem reduces to solving two sets of singular integral equations. Numerical values of the crack tip stress-intensity factors are obtained for various crack size, crack location, crack surface insulation, fiber volume fraction and orientation angles. The results are displayed graphically.  相似文献   

19.
A three-dimensional problem on the contact interaction between the faces of a rectangular crack under a normally incident harmonic tension–compression wave is considered. The problem is solved by using the method of boundary integral equations and an iterative algorithm. The contact forces and the discontinuity in the displacement of the crack faces are studied. The results obtained are compared with those for a finite plane crack.  相似文献   

20.
The scattering problem of anti-plane shear waves in a functionally graded material strip with an off-center crack is investigated by use of Schmidt method. The crack is vertically to the edge of the strip. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations that the unknown variable is the jump of the displacement across the crack surfaces. To solve the dual integral equations, the jump of the displacement across the crack surfaces was expanded in a series of Jacobi polynomials. Numerical examples were provided to show the effects of the parameter describing the functionally graded materials, the position of the crack and the frequency of the incident waves upon the stress intensity factors of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号