首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   

2.
3.
The present article deals with recent numerical results from on-going research conducted at ONERA/DMAE regarding the validation of turbulence models for unsteady transonic flows, in which the mechanism of the shock-wave/boundary-layer interaction is important. The main goal is to predict the onset and extent of shock induced oscillations (SIO) that appear over the suction side of two-dimensional rigid airfoils and lead to the formation of unsteady separated areas. Computations are performed with the ONERA object-oriented software "elsA", using the URANS-type approach. In this approach, the unsteady mean turbulent flow is resolved using the standard Reynolds-averaged Navier–Stokes (RANS) equations and closure relationships involving standard transport equation-type models without any explicit modification due to unsteadiness. Applications are provided and discussed for two different test cases, one of which is rather well documented for CFD validation and described by mean-flow, phase-averaged and fluctuating data. Results demonstrate the importance of modelling the upper and lower walls of the test section when trying to capture SIO as precisely as possible with 2D computations, even though the adaptation of wind tunnel walls had been carefully considered. Finally, turbulence validation has been performed using one- and two-transport equation-type models, one of them resulting from in-house investigations for other turbulent flows applications.  相似文献   

4.
In many cases, turbulence is superimposed on an unsteady organized motion of a mean flow. In the past, these turbulent flows have been studied by time or ensemble averaging methods and some decomposition techniques such as proper orthogonal decomposition (POD). In this study, a new decomposition technique called the turbulence filter will be used to decompose the forced turbulent jet flows. By using the turbulence filtering technique, the fluctuating (turbulent) part and the more organized (forced) part of the velocity field are analyzed. Within this context several experiments on organized turbulent jet flow have been carried out. In the experiments, variable frequency and amplitude oscillation are imposed on a 1D jet. An elliptical plate was used in order to obtain sinusoidal forcing. The axial distance, Reynolds number and the forcing frequency of the signal were varied. The multiple hot wires (six probes) were used to investigate the evolution of the signal along the radial distance. The obtained results of the turbulence filter are compared with those of phase-averaging and POD techniques. The eigenmodes of the data are also evaluated by using the POD method. Received: 31 July 1998/Accepted: 19 January 2000  相似文献   

5.
采用一种基于标准k-ε模型改进的局部时均化模型(Partially-Averaged Navier-Stokes Model,PANS),并应用于空化流动计算。控制不同的模型参数,分别对绕平头轴对称回转体和Clark-Y型水翼的空化流动进行模拟,并与实验结果进行对比。结果表明:PANS模型中未分解湍动能比率fk的取值对预测空化流动的数值计算精度有重要影响,改变fk的取值可实现对不同滤波尺度范围内的求解;随着fk值的减小PANS的预测精度逐步提高,能在相对较大范围内求解较小尺度的湍流运动过程中,预测到湍流运动中强烈的非定常特性;同时可以比较准确地预测空化流场结构和动力特性。  相似文献   

6.
The unsteady turbulent flow around bodies at high Reynolds number is predicted by an anisotropic eddy-viscosity model in the context of the Organised Eddy Simulation (OES). A tensorial eddy-viscosity concept is developed to reinforce turbulent stress anisotropy, that is a crucial characteristic of non-equilibrium turbulence in the near-region. The theoretical aspects of the modelling are investigated by means of a phase-averaged PIV in the flow around a circular cylinder at Reynolds number 1.4×105. A pronounced stress–strain misalignment is quantified in the near-wake region of the detached flow, that is well captured by a tensorial eddy-viscosity concept. This is achieved by modelling the turbulence stress anisotropy tensor by its projection onto the principal matrices of the strain-rate tensor. Additional transport equations for the projection coefficients are derived from a second-order moment closure scheme. The modification of the turbulence length scale yielded by OES is used in the Detached Eddy Simulation hybrid approach. The detached turbulent flows around a NACA0012 airfoil (2-D) and a circular cylinder (3-D) are studied at Reynolds numbers 105 and 1.4×105, respectively. The results compared to experimental ones emphasise the predictive capabilities of the OES approach concerning the flow physics capture for turbulent unsteady flows around bodies at high Reynolds numbers.  相似文献   

7.
 The phase-averaging window size is shown to affect the measurement of phase-averaged turbulence quantities in unsteady turbulent flows. The flow turbulence is usually estimated on the assumption of quasi-constant flow velocity during the duration of the phase-averaging window. The calculated turbulence level then consists of two parts: one due to the turbulent velocity fluctuations and the other due to the changes in the mean flow velocity. This second part is shown to be directly proportional to the averaging window size. In order to determine the true turbulence the averaging window size has to be made as small as possible, especially if the unsteady flow exhibits large temporal gradients and the flow turbulence itself is small. Received: 9 April 1996/Acceped: 17 August 1996  相似文献   

8.
The present study describes the application of particle image velocimetry (PIV) to investigate the compressible flow in the wake of a two-dimensional blunt base at a freestream Mach number MX=2. The first part of the study addresses specific issues related to the application of PIV to supersonic wind tunnel flows, such as the seeding particle flow-tracing fidelity and the measurement spatial resolution. The seeding particle response is assessed through a planar oblique shock wave experiment. The measurement spatial resolution is enhanced by means of an advanced image-interrogation algorithm. In the second part, the experimental results are presented. The PIV measurements yield the spatial distribution of mean velocity and turbulence. The mean velocity distribution clearly reveals the main flow features such as expansion fans, separated shear layers, flow recirculation, reattachment, recompression and wake development. The turbulence distribution shows the growth of turbulent fluctuations in the separated shear layers up to the reattachment location. Increased velocity fluctuations are also present downstream of reattachment outside of the wake due to unsteady flow reattachment and recompression. The instantaneous velocity field is analyzed seeking coherent flow structures in the redeveloping wake. The instantaneous planar velocity and vorticity measurements return evidence of large-scale turbulent structures detected as spatially coherent vorticity fluctuations. The velocity pattern consistently shows large masses of fluid in vortical motion. The overall instantaneous wake flow is organized as a double row of counter-rotating structures. The single structures show vorticity contours of roughly elliptical shape in agreement with previous studies based on spatial correlation of planar light scattering. Peak vorticity is found to be five times higher than the mean vorticity value, suggesting that wake turbulence is dominated by the activity of large-scale structures. The unsteady behavior of the reattachment phenomenon is studied. Based on the instantaneous flow topology, the reattachment is observed to fluctuate mostly in the streamwise direction suggesting that the unsteady separation is dominated by a pumping-like motion.  相似文献   

9.
Predictions for two-dimensional, steady, incompressible flows under both laminar and turbulent conditions are presented. The standard k-? turbulence model is used for the turbulent flows. The computational method is based on the approximate factorization technique. The coupled approach is used to link the equations of motion and the turbulence model equations. Mass conservation is enforced by either the pseudocompressibility method or the pressure correction method. Comparison of the two methods shows a superiority of the pressure correction method. Second- and fourth-order artifical dissipation terms are used in order to achieve good convergence and to handle the turbulence model equations efficiently. Several internal and external test cases are investigated, including attached and separated flows.  相似文献   

10.
《Fluid Dynamics Research》2006,38(2-3):84-107
In the field of fluid engineering, controlling turbulent flows remains a crucial problem. This paper presents a basis of numerical methods and turbulence models for the large Eddy simulation. Simulation results include the unsteady analyses of complex flows, such as the vortex dynamics of turbulent jets subject to inlet perturbations and the reacting flow with flame propagation in a gas–turbine combustor flow. Applications employing large Eddy simulation are emerging as one of the most important aspects of the “Frontier Simulation Software for Industrial Science” project for the next generation of fluid dynamic design and development.  相似文献   

11.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Large eddy simulation (LES) is carried out to investigate the turbulent boundary-layer flows over a hill-shaped model with a steep or relatively moderate slope at moderately high Reynolds numbers (Re = O(103)) defined by the hill height and the velocity at the hill height. The study focuses on the effects of surface roughness and curvature. For Sub-grid Scale (SGS) modeling of LES, both the dynamic Smagorinsky model (DSM) and the dynamic mixed model (DMM) are applied. The behavior of the separated shear layer and the vortex motion are affected by the oncoming turbulence, such that the shear layer comes close to the ground surface, or the size of a separation region becomes small because of the earlier instability of the separated shear layer. Appropriate measures are required to generate the inflow turbulence. The methods of Lund et al. (J. Comput. Phys., 140:233–258, 1998) and Nozawa and Tamura (J. Wind Eng. Ind. Aerodyn., 90:1151–1162, 2002; The 4th European and African Conference on Wind Engineering, 1–6, 2005) are employed to simulate the smooth- and rough-wall turbulent boundary layers in order to generate time-sequential data of inflow turbulence. This paper discusses the unsteady phenomena of the wake flows over the smooth and rough 2D hill-shaped obstacles and aims to clarify the roughness effects on the flow patterns and the turbulence statistics distorted by the hill. Numerical validation is conducted by comparing the simulation results with wind tunnel experiment data for the same hill shape at almost the same Re. The applicability of DSM and DMM are discussed, focusing on the recirculation region behind a steep hill.  相似文献   

13.
A relatively simple, yet efficient and accurate finite difference method is developed for the solution of the unsteady boundary layer equations for both laminar and turbulent flows. The numerical procedure is subjected to rigorous validation tests in the laminar case, comparing its predictions with exact analytical solutions, asymptotic solutions, and/or experimental results. Calculations of periodic laminar boundary layers are performed from low to very high oscillation frequencies, for small and large amplitudes, for zero as well as adverse time-mean pressure gradients, and even in the presence of significant flow reversal. The numerical method is then applied to predict a relatively simple experimental periodic turbulent boundary layer, using two well-known quasi-steady closure models. The predictions are shown to be in good agreement with the measurements, thereby demonstrating the suitability of the present numerical scheme for handling periodic turbulent boundary layers. The method is thus a useful tool for the further development of turbulence models for more complex unsteady flows.  相似文献   

14.
Dilute, dispersed two-phase flows arise in many contexts ranging from solid particles or droplets in gas flows to bubbles in liquids. Many of the flows of interest are turbulent, which presents a complex problem to analyze or to determine the dominant physical processes contributing to the observed phenomena. Advances in experimental techniques have made it possible to measure directly turbulent and particle velocity fluctuations in dilute systems. This has provided a counterpart to advances in computational and analytical models and a basis on which to test these models. Three specific areas are considered: the fluctuating forces on an individual particle in an unsteady flow, the response of a solid particle to a turbulent air flow, and the corresponding response of a small bubble in turbulent liquid flows. Results from direct numerical simulations are presented for each of these, including the nonuniform distribution of particles generated by local instantaneous features of the flow. The issue of turbulence modulation at low to moderate void fractions is discussed.  相似文献   

15.
Towards a Unified Turbulence Simulation Approach for Wall-Bounded Flows   总被引:1,自引:0,他引:1  
A hybrid Reynolds-averaged Navier–Stokes/Large-Eddy Simulation (RANS/LES) methodology has received considerable attention in recent years, especially in its application to wall-bounded flows at high-Reynolds numbers. In the conventional zonal hybrid approach, eddy-viscosity-type RANS and subgrid scale models are applied in the RANS and LES zones, respectively. In contrast, the non-zonal hybrid approach uses only a generalized turbulence model, which provides a unified simulation approach that spans the continuous spectrum of modeling/simulation schemes from RANS to LES. A particular realization of the non-zonal approach, known as partially resolved numerical simulation (PRNS), uses a generalized turbulence model obtained from a rescaling of a conventional RANS model through the introduction of a resolution control function F R , where F R is used to characterize the degree of modeling required to represent the unresolved scales of turbulent motion. A new generalized functional form for F R in PRNS is proposed in this study, and its performance is compared with unsteady RANS (URANS) and LES computations for attached and separated wall-bounded turbulent flows. It is demonstrated that PRNS behaves similarly to LES, but outperforms URANS in general.  相似文献   

16.
A vortex cell (in this paper) is an aerodynamically shaped cavity in the surface of a body, for example a wing, designed specially to trap the separated vortex within it, thus preventing large-scale unsteady vortex shedding from the wing. Vortex stabilisation can be achieved either by the special geometry, as has already been done experimentally, or by a system of active control. In realistic conditions the boundary and mixing layers in the vortex cell are always turbulent. In the present study a model for calculating the flow in a vortex cell was obtained by replacing the laminar viscosity with the turbulent viscosity in the known high-Reynolds-number asymptotic theory of steady laminar flows in vortex cells. The model was implemented numerically and was shown to be faster than solving the Reynolds-averaged Navier–Stokes equations. An experimental facility with a vortex cell was built and experiments performed. Comparisons of the experimental results with the predictions of the model are reasonably satisfactory. The results also indicate that at least for flows in near-circular vortex cells it is sufficient to have accurate turbulence models only in thin viscous layers, while outside the viscosity should only be small enough to make the flow effectively inviscid.  相似文献   

17.
A coupling methodology between an upstream Reynolds Averaged Navier–Stokes (RANS) simulation and a Large Eddy Simulation (LES) further downstream is presented. The focus of this work is on the RANS-to-LES interface inside an attached turbulent boundary layer, where an unsteady LES content has to be explicitly generated from a steady RANS solution. The performance of the Synthetic-Eddy Method (SEM), which generates realistic synthetic eddies at the inflow of the LES, is investigated on a wide variety of turbulent flows, from simple channel and square duct flows to the flow over an airfoil trailing edge. The SEM is compared to other existing methods of generation of synthetic turbulence for LES, and is shown to reduce substantially the distance required to develop realistic turbulence downstream of the inlet.  相似文献   

18.
A new monotonic scheme for the approximation of steady scalar transport is formulated and implemented within a collocated finite-volume/pressure-correction algorithm for general turbulent flows in complex geometries. The scheme is essentially a monotonic implementation of the quadratic QUICK interpolation and uses a continuous and compact limiter to secure monotonicity. The principal purpose is to allow an accurate and fully bounded, hence stable, approximation of turbulence convection in the context of two-equation eddy viscosity and Reynolds stress transport modelling of two- and three-dimensional flows, both subsonic and transonic. Among other benefits, this capability permits an assessment to be made of the adequacy of approximating turbulence convection with first-order upwind schemes in conjunction with higher-order formulations for mean-flow properties—a widespread practice. The performance characteristics of the bounded scheme are illustrated by reference to computations for scalar transport, for a transonic flow in a Laval nozzle, for one separated laminar flow and for two separated turbulent flows computed with a non-linear RNG model and full Reynolds stress closure.  相似文献   

19.
基于kω的SST两方程湍流模型,在时间域求解雷诺平均Navier-Stokes方程,模拟弯度翼型大迎角时的分离流动。通过给翼型施加一定形式的扰动,重点关注了翼型弯度对大迎角分离涡流场平衡态转移的影响。研究结果表明:与相同厚度20%以上的对称翼型相比,2%弯度的翼型出现分离涡流场平衡态转移的起始迎角变小2°左右,迎角区间变宽约1°;在厚度相对较小的NACA2416翼型上也发现上述分离涡平衡态转移现象。由此说明翼型弯度在一定程度上促使了分离涡平衡态的转移。  相似文献   

20.
The von Karman length scale is able to reflect the size of the local turbulence structure. However, it is not suitable for the near wall region of wall-bounded flows, for its value is almost infinite there. In the present study, a simple and novel length scale combining the wall distance and the von Karman length scale is proposed by introducing a structural function. The new length scale becomes the von Karman length scale once local unsteady structures are detected. The proposed method is adopted in a series of turbulent channel flows at different Reynolds numbers. The results show that the proposed length scale with the structural function can precisely simulate turbulence at high Reynolds numbers, even with a coarse grid resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号