首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
力学   2篇
数学   2篇
物理学   1篇
  2011年   2篇
  2008年   2篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Computations of wall distances by solving a transport equation   总被引:1,自引:0,他引:1  
Computations of wall distances still play a key role in modern turbulence modeling. Motivated by the expense involved in the computation, an approach solving partial differential equations is considered. An Euler-like transport equation is proposed based on the Eikonal equation. Thus, the efficient algorithms and code components developed for solving transport equations such as Euler and Navier-Stokes equations can be reused. This article provides a detailed implementation of the transport equation in the Cartesian coordinates based on the code of computational fluid dynamics for missiles (MICFD) of Beihang University. The transport equation is robust and rapidly convergent by the implicit lower-upper symmetric Gauss-Seidel (LUSGS) time advancement and upwind spatial discretization. Geometric derivatives must also be upwind determined to ensure accuracy. Special treatments on initial and boundary conditions are discussed. This distance solving approach is successfully applied on several complex geometries with 1–1 blocking or overset grids.  相似文献   
2.
Prediction of the characteristics of turbulent flows with strong streamline curvature, such as flows in turbomachines, curved channel flows, flows around airfoils and buildings, is of great importance in engineering applications and poses a very practical challenge for turbulence modeling. In this paper, we analyze qualitatively the curvature effects on the structure of turbulence and conduct numerical simulations of a turbulent Uduct flow with a number of turbulence models in order to assess their overall performance. The models evaluated in this work are some typical linear eddy viscosity turbulence models, nonlinear eddy viscosity turbulence models (NLEVM) (quadratic and cubic), a quadratic explicit algebraic stress model (EASM) and a Reynolds stress model (RSM) developed based on the second-moment closure. Our numerical results show that a cubic NLEVM that performs considerably well in other benchmark turbulent flows, such as the Craft, Launder and Suga model and the Huang and Ma model, is able to capture the major features of the highly curved turbulent U-duct flow, including the damping of turbulence near the convex wall, the enhancement of turbulence near the concave wall, and the subsequent turbulent flow separation. The predictions of the cubic models are quite close to that of the RSM, in relatively good agreement with the experimental data, which suggests that these models may be employed to simulate the turbulent curved flows in engineering applications.  相似文献   
3.
首先定性地分析了流线曲率效应对流场湍流结构的影响,然后以U型槽道流为典型算例,对多种湍流模型进行了评估.评估的模型包括:线性涡粘性模型,二阶和三阶非线性涡粘性模型,二阶显式代数应力模型和Reynolds应力模型.评估结果表明,性能良好的三阶非线性涡粘性模型,如黄于宁等人发展的HM模型以及CLS模型,可以较好地描述流线的曲率效应对湍流结构的影响,如凸曲率作用下内壁附近湍流强度的衰减和凹曲率作用下外壁附近湍流的增强,并且较好地确定了管道下游的分离点位置和分离泡长度,其预测的结果和实验符合较好,与Reynolds力模型的结果十分接近,因此可以较好地应用于具有曲率效应的工程湍流的计算.  相似文献   
4.
We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22(2005)1709] and Huang et al. [Sci. Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000//in, and M = 4.5, Re = 1.7 × 10^7/m, respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory. The compressibility effect on the RANS models is discussed.  相似文献   
5.
通过求解输运方程计算壁面距离   总被引:1,自引:0,他引:1  
壁面距离在当代湍流模化中仍然扮演着关键角色,然而苦于遍历计算壁面距离的高昂代价,该文考虑了求解偏微分方程的途径.基于Eikonal方程构造出类Euler形式的输运方程,这样,可以直接利用求解Euler和Navier-Stokes方程的CFD程序使用的高效数值格式和部分代码.基于北航的MI-CFD(CFD for missles)数值平台,详尽地介绍了该输运方程在直角坐标下的求解过程.使用隐式LIJSGS时间推进和迎风空间离散,发现该方程具有鲁棒快速的收敛特性.为了保证精度,网格度量系数必须也迎风插值计算.讨论了初始条件和边界条件的特殊处理.成功应用该壁面距离求解方法计算了几个含1-1对应网格和重叠网格的复杂外形.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号