首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  力学   4篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有4条查询结果,搜索用时 140 毫秒
1
1.
The purpose of the present paper is to evaluate very‐high‐order upwind schemes for the direct numerical simulation (DNS ) of compressible wall‐turbulence. We study upwind‐biased (UW ) and weighted essentially nonoscillatory (WENO ) schemes of increasingly higher order‐of‐accuracy (J. Comp. Phys. 2000; 160 :405–452), extended up to WENO 17 (AIAA Paper 2009‐1612, 2009). Analysis of the advection–diffusion equation, both as Δx→0 (consistency), and for fixed finite cell‐Reynolds‐number ReΔx (grid‐resolution), indicates that the very‐high‐order upwind schemes have satisfactory resolution in terms of points‐per‐wavelength (PPW ). Computational results for compressible channel flow (Re∈[180, 230]; CL ∈[0.35, 1.5]) are examined to assess the influence of the spatial order of accuracy and the computational grid‐resolution on predicted turbulence statistics, by comparison with existing compressible and incompressible DNS databases. Despite the use of baseline Ot2) time‐integration and Ox2) discretization of the viscous terms, comparative studies of various orders‐of‐accuracy for the convective terms demonstrate that very‐high‐order upwind schemes can reproduce all the DNS details obtained by pseudospectral schemes, on computational grids of only slightly higher density. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献
2.
The present paper investigates the multigrid (MG) acceleration of compressible Reynolds‐averaged Navier–Stokes computations using Reynolds‐stress model 7‐equation turbulence closures, as well as lower‐level 2‐equation models. The basic single‐grid SG algorithm combines upwind‐biased discretization with a subiterative local‐dual‐time‐stepping time‐integration procedure. MG acceleration, using characteristic MG restriction and prolongation operators, is applied on meanflow variables only (MF–MG), turbulence variables being simply injected onto coarser grids. A previously developed non‐time‐consistent (for steady flows) full‐approximation‐multigrid (s–MG) is assessed for 3‐D anisotropy‐driven and/or separated flows, which are dominated by the convergence of turbulence variables. Even for these difficult test cases CPU‐speed‐ups rCPUSUP∈[3, 5] are obtained. Alternative, potentially time‐consistent approaches (unsteady u–MG), where MG acceleration is applied at each subiteration, are also examined, using different subiterative strategies, MG cycles, and turbulence models. For 2‐D shock wave/turbulent boundary layer interaction, the fastest s–MG approach, with a V(2, 0) sawtooth cycle, systematically yields CPU‐speed‐ups of 5±½, quasi‐independent of the particular turbulence closure used. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献
3.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献
4.
This paper is concerned with recent advances in the development of near wall-normal-free Reynolds-stress models, whose single point closure formulation, based on the inhomogeneity direction concept, is completely independent of the distance from the wall, and of the normal to the wall direction. In the present approach the direction of the inhomogeneity unit vector is decoupled from the coefficient functions of the inhomogeneous terms. A study of the relative influence of the particular closures used for the rapid redistribution terms and for the turbulent diffusion is undertaken, through comparison with measurements, and with a baseline Reynolds-stress model (RSM) using geometric wall normals. It is shown that wall-normal-free rsms can be reformulated as a projection on a tensorial basis that includes the inhomogeneity direction unit vector, suggesting that the theory of the redistribution tensor closure should be revised by taking into account inhomogeneity effects in the tensorial integrity basis used for its representation. PACS 47.32.Fg; 47.85.Gj; 47.27.Eq  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号