首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
本文采用了一种基于不连续场修正权函数的无网格方法来处理二维平面多裂纹问题。相较于传统的无网格断裂不连续场和奇异场模拟方法,修正权函数法算法简便易实现。采用修正权函数处理多裂纹时,只需要对每一段裂纹周围节点的权函数进行修正,就能同时模拟多裂纹不连续位移场和多裂尖奇异场。本文采用基于不连续场修正权函数的无单元Galerkin方法(EFGM),对Y型裂纹板、十字型裂纹板和孔边双裂纹板进行了分析。数值结果表明,在不引入扩展基函数情况下,通过修正权函数法能够得到精度较高的应力强度因子解,能较好地拟合多裂纹的裂尖奇异场。  相似文献   

2.
许艳  马文涛 《应用力学学报》2015,(3):490-495,12
提出特征距离这一概念对内部基扩充无网格法进行修正,并数值模拟了多裂纹之间的相互作用。特征距离法用于选择内部基扩充无网格Galerkin法的奇异基函数,该方法仅对传统的内部基扩充无网格Galerkin法作了很小的改进,即可方便地应用于求解多裂纹问题;给出了相互作用能量积分计算混合型模式下的应力强度因子,数值模拟了三条内部裂纹和六条边裂纹问题,并与杂交位移不连续边界元法的计算结果进行比较。数值结果表明:修正的内部基扩充无网格法可以方便、有效地求解多裂纹问题,在不增加附加节点和自由度的情况下与杂交位移不连续方法的计算精度非常接近。  相似文献   

3.
裂纹问题的一致性高阶无网格法   总被引:2,自引:0,他引:2  
一致性高阶无网格法能高效精确地求解连续体问题,尤其是能得到高精度的应力场。本文将该方法拓展到应力解析精度至关重要的裂纹问题(即非连续体问题)的数值分析。采用背景积分网格描述裂纹几何,基于无需增加节点额外自由度的虚拟节点法描述裂纹处位移场的间断,提出了虚拟节点的引入算法和断裂单元的数值积分方法。为进一步模拟裂纹扩展,采用相互作用积分方法计算应力强度因子,裂纹的扩展方向由最大周向应力准则确定。数值结果表明,本文发展方法能够精确地通过间断分片试验;相较于标准的高阶无网格法和低阶一致性无网格法,本文的一致性高阶无网格法显著改善了应力强度因子的计算精度,能够准确预测裂纹扩展路径。  相似文献   

4.
杨明泽  周立明  王晖 《应用力学学报》2016,(4):560-564,732-733
为提高含裂纹压电柔性臂在断裂分析中的求解精度,基于压电材料断裂力学理论,建立了压电柔性臂的力学分析模型。将描述裂纹尖端奇异性的位移场函数和电场函数引入到传统无网格伽辽金法中,提出了力电耦合扩展无网格伽辽金法。与传统无网格伽辽金法相比,本方法只需要较小的影响域来描述裂尖奇异场,并且节点影响域不会被裂纹线影响,不要可视准则和衍射准则,提高了计算精度。由虚拟裂纹闭合法推导了压电材料能量释放率,讨论了不同高斯点密度对强计算结果的影响。与解析解、有限元法的计算结果进行了比较,在高斯点个数为6×6时,扩展无网格伽辽金法的计算误差为1.88%,明显好于有限元的计算误差2.5%。数值算例结果表明本方法具有较高的计算精度。  相似文献   

5.
不连续体的数值模拟尤其是动态裂纹的追踪问题一直是工程界研究的热点和难点问题。无网格方法仅仅需要结点信息,非常适合于求解这类问题。基于单位分解思想,在移动最小二乘近似函数(MLS)中根据裂纹面的不连续位移增加一个Heaviside函数,在裂尖则增加四个扩展函数描述渐进裂纹位移场;应用Galerkin方法推导了平衡方程的离散线性方程,并给出了求解裂纹问题应力强度因子的计算公式。与其他类型的扩展无网格相比,在裂尖处近似函数不需要使用可视准则,很容易生成r1/2奇异;另一个优势是影响域并没有因为裂纹的存在而改变,不会降低方程的稀疏性,求解效率较高。数值算例表明,该方法能方便有效地模拟不连续问题,具有十分广阔的应用空间。  相似文献   

6.
一致性高阶无网格法能高效精确地求解连续体问题,尤其是能得到高精度的应力场。本文将该方法拓展到应力解析精度至关重要的裂纹问题(即非连续体问题)的数值分析。采用背景积分网格描述裂纹几何,基于无需增加节点额外自由度的虚拟节点法描述裂纹处位移场的间断,提出了虚拟节点的引入算法和断裂单元的数值积分方法。为进一步模拟裂纹扩展,采用相互作用积分方法计算应力强度因子,裂纹的扩展方向由最大周向应力准则确定。数值结果表明,本文发展方法能够精确地通过间断分片试验;相较于标准的高阶无网格法和低阶一致性无网格法,本文的一致性高阶无网格法显著改善了应力强度因子的计算精度,能够准确预测裂纹扩展路径。  相似文献   

7.
单位分解扩展无网格法(PUEM)是一种求解不连续问题的新型无网格方法.其基于单位分解思想,通过在传统无网格法的近似函数中加入扩展项来反映由裂纹所产生的不连续位移场.详细描述了水平集方法,PUEM不连续近似函数的构造及控制方程的离散.针对裂纹扩展问题,提出了一种十分简单的水平集更新算法;讨论了不同的节点数、高斯积分阶次以及围线积分区域对应力强度因子计算结果的影响,并给出了合理的参数;模拟了边裂纹和中心裂纹的扩展问题,并与XFEM的数值结果进行了比较.数值算例表明,本文方法具有较高的计算精度,是模拟裂纹扩展非常有效的方法,具有广阔的应用前景.  相似文献   

8.
提出将无网格Galerkin法与有限元耦合的方法用于分析动态裂纹扩展问题,只在裂尖附近区域沿裂纹扩展方向布置无网格结点,而在其他区域采用一般的有限元,区域交界处的结点采用MLS方法插值,然后将求得的结点值再分配到有限单元的相关结点上,保证了无网格区域和有限元区域的交界处位移的连续。避免了网格的再生成,同时也克服了单纯使用无网格Galerkin法所带来的边界条件难处理及计算效率较低的缺点。数值算例显示这种方法是有效的。  相似文献   

9.
应用再造核质点法(RKPM)进行了结构裂纹计算问题的研究。将不连续处理技术一可视准则和衍射方法应用于RKPM来模拟裂纹附近场函数,实现二维和三维裂纹体的分析。避免了有限元方法中裂纹附近复杂的网格剖分工作。应用面向对象技术在计算程序中实现了二维和三维裂纹体的应力场计算分析,并且将结构离散工作和裂缝网格构造工作分离,从而提高计算效率。简单的算例表明应用RKPM方法在二维和三维含裂纹结构计算是有效的。  相似文献   

10.
张延军  张晓炜 《力学学报》2001,9(3):321-325
无网格辽金法作为-种新的岩土工程数值计算方法, 该法其只需节点信息的无单元特性, 使其具有计算优势。本文结合固结EFGM刚度矩阵公式, 对不同的计算参数进行计算分析, 找出其影响规律。并采用跳跃函数处理内部边界条件, 计算结果表明, EFGM处理内部场函数不连续是准确的。  相似文献   

11.
一种曲折裂纹尖端单元位移场的构造方法   总被引:1,自引:1,他引:0  
在扩展有限元的框架内,本文发展了一种构造裂尖单元位移场的方法。整个裂纹沿程两侧的非连续位移场只通过富集变换的阶梯函数表征,在裂尖单元,通过调整形函数使得非连续性严格地消失于裂纹尖端。在避免混合区单元引入不满足单位分解的附加位移项的同时,实现了裂纹尖端单元位移场部分非连续特性的表达。还对裂尖单元的形函数调整原则进行了分析,以平面四节点单元为例提出了两种调整方式。文中裂尖单元中含有曲折裂纹的算例说明了本文方法的有效性和适用性。  相似文献   

12.
探寻适用于扩展数字图像相关方法(X-DIC)的裂纹尖端位移函数,对于提高该方法在裂尖测试精度方面具有重要意义。本文基于断裂力学裂纹尖端位移场函数,进行主导项影响分析,并探究裂尖位移函数中各项及其组合项对位移场表征的贡献程度及对测试精度的影响。通过对I型、II型及混合型裂纹进行测试,发现各项及其组合项在不同裂纹类型测试中的影响有着较大区别,从而得出在X-DIC测试计算中影响裂尖位移场表征的主导项。最后,应用上述研究成果对某航空超硬铝合金的单边裂纹进行拉伸测试。  相似文献   

13.
对于平面裂纹问题,针对扩展有限元法和无网格伽辽金法的不足,从结构的整体位移模式出发,提出了一种新的数值模拟方法。在整个求解域内构造其试探函数,并引入裂纹修正项描述裂尖处的奇异性和裂纹面的强间断特性;同时,提出了一种新的强制边界条件施加方法,通过引入位移边界水平集函数,将位移边界条件包含在近似位移场的表达式中,有效地解决了位移边界条件问题,减小了刚度矩阵的阶数,非常方便地消除了刚度矩阵的奇异性,降低了线性方程组的求解难度。含裂纹矩形平板结构的数值算例验证了该方法的有效性。  相似文献   

14.
汤文治  肖汉斌  邹晟 《力学学报》2019,51(4):1101-1109
数字图像相关方法作为一种新的非接触式位移测量方法,在力学工程中有广泛的应用前景,然而受限于标准方法对图像变形的连续性要求,这种高效的测量方法在断裂力学领域的推广受到了限制. 为解决这一问题,提出采用引入子区分离数学模型,代替标准方法的连续模型,来对非连续区域进行精确识别和匹配的非连续数字图像相关方法. 研究子区被裂纹等非连续分割后原始像素点的位移情况,并引入裂纹张开向量用以表征被分割子区的主区和副区的位移关系;从而建立子区分离模型的数学表达式,并且为所提出的模型设计相应的图像相关算法;然后将所提出的非连续数字图像相关方法应用于重构平板拉伸试验开裂过程中图像的位移. 研究结果表明,相比于标准的数字图像相关方法,所提出的非连续数字图像相关方法解决了图像相关法在非连续区域失效的问题,提高了数字图像相关方法对位移测量的正确率,特别是能够准确重构裂纹面及附近的位移场,其测量精度能够达到亚像素级别.   相似文献   

15.
A new integral equation formulation of two-dimensional infinite isotropic medium (matrix) with various inclusions and cracks is presented in this paper. The proposed integral formulation only contains the unknown displacements on the inclusion–matrix interfaces and the discontinuous displacements over the cracks. In order to solve the inclusion–crack problems, the displacement integral equation is used when the source points are acting on the inclusion–matrix interfaces, whilst the stress integral equation is adopted when the source points are being on the crack surfaces. Thus, the resulting system of equations can be formulated so that the displacements on the inclusion–matrix interfaces and the discontinuous displacements over the cracks can be obtained. Based on one point formulation, the stress intensity factors at the crack tips can be achieved. Numerical results from the present method are in excellent agreement with those from the conventional boundary element method.  相似文献   

16.
建立横向拉伸载荷下的唇形裂纹数学模型,采用复变函数的方法,通过保角映射,推导了唇形裂纹尖端应力场和位移场的解析解,建立了唇形裂纹的应力强度因子准则和最大能量释放率准则,结合算例分析陶瓷基复合材料基体唇形裂纹的几何参数、外载荷和纤维分布对失效准则的影响规律.结果 表明,(1)裂纹尖端应力场和位移场的解析解与有限元计算结果进行对比,验证了方法的有效性;(2)相较于Griffith裂纹和椭圆裂纹,基于唇形裂纹的失效准则对裂纹尖端的敏感性更高,适用于预测脆性陶瓷基体裂纹的扩展;(3)对于不同几何参数的唇形裂纹,采用最大能量释放率准则的基体裂纹的扩展速率要大于应力强度因子准则.  相似文献   

17.
江守燕  李云  杜成斌 《力学学报》2019,51(1):278-288
结合了扩展有限元法(extended finite elementmethods,XFEM)和比例边界有限元法(scaled boundary finite elementmethods,SBFEM)的主要优点,提出了一种改进型扩展比例边界有限元法(improvedextended scaled boundary finite elementmethods,$i$XSBFEM),为断裂问题模拟提供了一条新的途径.类似XFEM,采用两个正交的水平集函数表征材料内部裂纹面,并基于水平集函数判断单元切割类型;将被裂纹切割的单元作为SBFE的子域处理,采用SBFEM求解单元刚度矩阵,从而避免了XFEM中求解不连续单元刚度矩阵需要进一步进行单元子划分的缺陷;同时,借助XFEM的主要思想,将裂纹与单元边界交点的真实位移作为单元结点的附加自由度考虑,赋予了单元结点附加自由度明确的物理意义,可以直接根据位移求解结果得出裂纹与单元边界交点的位移;对于含有裂尖的单元,选取围绕裂尖单元一圈的若干层单元作为超级单元,并将此超级单元作为SBFE的一个子域求解刚度矩阵,超级单元内部的结点位移可通过SBFE的位移模式求解得到,应力强度因子可基于裂尖处的奇异位移(应力)直接获得,无需借助其他的数值方法.最后,通过若干数值算例验证了建议的$i$XSBFEM的有效性,相比于常规XFEM,$i$XSBFEM的基于位移范数的相对误差收敛性较好;采用$i$XSBFEM通过应力法和位移法直接计算得到的裂尖应力强度因子均与解析解吻合\较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号