首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
基于浸没光滑有限元模型(immersed smooth finite element model,IS–FEM),计算球形与非球形颗粒曳力系数。设计颗粒曳力图像测量试验,验证IS–FEM模拟精度。颗粒相的运动行为基于连续介质理论的光滑有限元法求解;流体控制方程通过特征分解的半隐式有限元法求解;颗粒与流体相通过非贴体网格交换数据。结果表明,球形颗粒流场特征对称分布,非球形颗粒稳定沉降时长轴与重力方向垂直。不同雷诺数下球形颗粒的曳力系数计算值与Stokes曳力系数一致,非球形颗粒曳力系数高于等效球形颗粒,IS–FEM计算值与沉降试验吻合良好。  相似文献   

2.
微生物是自然生态系统的重要组成部分,掌握微生物在复杂流体中的运动特性可以为微型器件的设计制造提供理论指导.壁面效应是微生物游动研究中的重要问题之一,已有研究表明微生物在壁面附近存在复杂的行为特征.然而已有研究大多集中于微生物在牛顿流体中的游动模拟,仅有少数涉及黏弹性流体等非牛顿流体.本文采用直接力虚拟区域法与乔列斯基分解相结合的数值方法,引入Squirmer微生物游动模型,研究了微生物在黏弹性流体中的游动问题.首先给出求解黏弹性流体本构方程的数值格式;并将该方法应用于研究微生物游动中的壁面效应.研究结果表明,游动方向是影响微生物颗粒壁面效应的重要因素.流体弹性应力会对微生物产生一个反向转矩,影响微生物的游动方向,从而阻碍微生物逃离壁面.微生物颗粒在黏弹性流体中与壁面作用时间较长,几乎达到牛顿流体的两倍以上.  相似文献   

3.
固体颗粒在热对流下沉降的直接数值模拟研究   总被引:1,自引:0,他引:1  
常建忠  安康  刘汉涛 《力学学报》2010,42(2):205-211
在任意拉格朗日-欧拉算法模拟等温惰性颗粒两相流的基础上,增加对能量方程的联立求解,在热对流条件下对固体颗粒在不同雷诺数下的沉降规律进行了直接数值模拟.结果表明:热对流引起了流场流动的变化和不对称,颗粒在热流体中沉降,热对流产生的力加速了冷颗粒的运动,尾部形成了涡脱落;颗粒在冷流体中沉降,热对流产生的力阻碍了冷颗粒的运动,尾部形成了羽流. 随着雷诺数的增大,颗粒经历了稳定沉降、周期性摆动到不稳定、无规则运动3个阶段.   相似文献   

4.
本文采用RNG k-ε湍流模型对简化的上呼吸道内的流场进行数值仿真,并结合随机涡相互作用模型对上呼吸道内颗粒的局部运动沉积特性进行了数值模拟研究.结果表明,惯性冲击是微米级颗粒物主要的沉降机理,惯性参量能很好地衡量颗粒的沉降规律.口腔中流动较平稳,颗粒受扰动较小.颗粒由于惯性冲击而运动靠近咽部后部并易于沉积在咽部后壁面...  相似文献   

5.
段俐 《力学学报》2022,54(2):289-290
微重力流体物理主要研究微重力环境中流体的行为及运动规律以及重力变化对运动规律的影响. 微重力环境中, 浮力对流、重力沉降及分层、液体静压等极大地减小, 地面重力效应掩盖的次级效应凸显, 从而影响或改变流体运动机制与行为. 微重力流体物理研究关注微重力环境(包括低重力环境)中液体、气体或多相混合物以及分散体系等物质的流动...  相似文献   

6.
为研究柱状颗粒在线性剪切流场中的运动状态和受力情况,本文以颗粒长径比为2,颗粒之间的初始距离ΔSPy=4D为例,基于直接力浸入边界法数值模拟了双柱状颗粒在三维线性剪切流场中的运动过程。根据模拟结果分析了柱状颗粒周围流场参数分布,在考虑壁面对颗粒的影响和颗粒之间相互影响的条件下,研究了颗粒的受力和运动的变化,探索了流体曳力导致柱状颗粒迁移和转动的规律。研究结果表明,双柱状颗粒在线性剪切流场中易向速度大的流体区域运动;前后两颗粒运动状态和轨迹不同,颗粒之间距离较近时,曳力会产生较大的波动;只有当颗粒在壁面附近时,滞后颗粒才能追上领先颗粒,两颗粒发生牵引、翻滚和分离过程。  相似文献   

7.
对于Oldroyd-B型黏弹性流体,本文应用格子Boltzmann方法(LBM),实现了流体在二维1:3扩张流道及3:1收缩流道中流动的数值模拟,获得了黏弹性流体在扩张和收缩流道中的流场分布.结合颗粒的受力和运动规则,基于点源颗粒模型,数值分析了颗粒在扩张流和收缩流中的沉降过程和特征,讨论了颗粒相对质量和起始位置以及雷诺数Re和威森伯格数Wi对颗粒沉降特征的影响.结果表明,颗粒相对质量和起始位置以及Re对颗粒沉降轨迹和落点影响较大,而Wi的影响则较小.  相似文献   

8.
王企鲲  孙仁 《力学进展》2012,42(6):692-703
当随机散布细颗粒的流体以低Re数层流流入直管时, 经过一段距离的流动后, 这些颗粒会被稳定地聚集在一个离管道中心固定距离的同心圆环位置上运动. 这种运动特征被称为颗粒“惯性聚集”现象. 该现象表明: 在相应的Re数管流中, 颗粒除受到流体沿主流方向的驱动力同时, 还受到垂直于主流的横向力的作用. 这种横向力是使颗粒产生聚集运动现象的主要原因, 被认为是由于流场的惯性力对颗粒的作用.  相似文献   

9.
金晓威  赖马树金  李惠 《力学学报》2021,53(10):2616-2629
流体运动理论上可用Navier?Stokes方程描述, 但由于对流项带来的非线性, 仅在少数情况可求得方程解析解. 对于复杂工程流动问题, 数值模拟难以高效精准计算高雷诺数流场, 实验或现场测量难以获得流场丰富细节. 近年来, 人工智能技术快速发展, 深度学习等数据驱动技术可利用灵活网络结构, 借助高效优化算法, 获得对高维、非线性问题的强大逼近能力, 为研究流体力学计算方法带来新机遇. 有别于传统图像识别、自然语言处理等典型人工智能任务, 深度学习模型预测的流场需满足流体物理规律, 如Navier?Stokes方程、典型能谱等. 近期, 物理增强的流场深度学习建模与模拟方法快速发展, 正逐渐成为流体力学全新研究范式: 根据流体物理规律选取网络输入特征或设计网络架构的方法称为物理启发的深度学习方法, 直接将流体物理规律显式融入网络损失函数或网络架构的方法称为物理融合的深度学习方法. 研究内容涵盖流体力学降阶模型、流动控制方程求解领域.   相似文献   

10.
对游动或飞行生物自主运动特性的深入研究,可促进仿生学的进一步发展。本文以"C"型游动鱼作为研究对象,建立了自主游动的柔性鱼模型。此模型较为真实地反映了鱼自主游动时鱼体内力(由鱼体肌肉收缩提供)、鱼体运动和外界流体之间的耦合作用。基于传统的反馈力方法和混合有限元浸入边界法对鱼的自主游动进行了数值模拟。分析了鱼自主游动启动阶段和巡游阶段流场特性及鱼体运动特征。模拟结果表明,受到鱼体自身组织结构和外界流场作用,鱼游动时通过呈"C"型和类"S"型的不断转换,以获取能量,实现鱼体自主游动。  相似文献   

11.
As a first step towards understanding particle–particle interaction in fluid flows, the motion of two spherical particles settling in close proximity under gravity in Newtonian fluids was investigated experimentally for particle Reynolds numbers ranging from 0.01 to 2000. It was observed that particles repel each other for Re>0.1 and that the separation distance of settling particles is Reynolds number dependent. At lower Reynolds numbers, i.e. for Re<0.1, particles settling under gravity do not separate.The orientation preference of two spherical particles was found to be Reynolds number dependent. At higher Reynolds numbers, the line connecting the centres of the two particles is always horizontal, regardless of the way the two particles are launched. At lower Reynolds numbers, however, the particle centreline tends to tilt to an arbitrary angle, even of the two particles are launched in the horizontal plane. Because of the tilt, a side migration of the two particles was found to exist. A linear theory was developed to estimate the side migration velocity. It was found that the maximum side migration velocity is approximately 6% of the vertical settling velocity, in good agreement with the experimental results.Counter-rotating spinning of the two particles was observed and measured in the range of Re=0–10. Using the linear model, it is possible to estimate the influence of the tilt angle on the rate of rotation at low Reynolds numbers. Dual particles settle faster than a single particle at small Reynolds numbers but not at higher Reynolds numbers, because of particle separation. The variation of particle settling velocity with Reynolds number is presented. An equation which can be used to estimate the influence of tilt angle on particle settling velocity at low Reynolds number is also derived.  相似文献   

12.
For real-time measurement of the fluid force acting on a particle which moves freely in liquid, we have made a “sensor particle” with a built-in wireless sensor. The sensor particle contains a 3-axis acceleration sensor, 3-axis magnetometer, microcomputer, wireless module and cells. The MEMS acceleration sensor detects the gravitational acceleration in addition to the dynamic acceleration of particle. In order to remove the gravity from acceleration signals, we applied the external magnetic field which is oriented in the same direction as the gravity field. The 3-axis magnetometer detects the direction of external magnetic field and consequently we can remove gravitational acceleration from the sensor signals with arbitrary attitude of particle. A preliminary experiment was performed for checking the accuracy of the measurement system. Firstly we measured the force acting on a settling particle toward a solid wall in liquid. The obtained signals of acceleration (force divided by mass) agrees well with the theoretical prediction of particle motion in liquid for each instant of time. The sensor particle also detects the lubrication force which is exerted on particle for a very short time when it comes close to the wall. Moreover, we applied our system to the gravitational settling of the particle assemblage and detected the fluid force acting on a particle in multi-particle system.  相似文献   

13.
宋晓阳  及春宁  许栋 《力学学报》2015,47(2):231-241
利用直接数值模拟、点球浸入边界法和颗粒离散元法相结合的方法, 模拟了颗粒在明渠湍流边界层中的运动, 并对颗粒的瞬时位置进行了Voronoi 分析, 定量研究了颗粒在湍流边界层中的运动和分布规律. 研究发现:颗粒的输运对湍流的统计特征有影响, 其运动与近壁区湍流拟序结构密切相关, 在"喷发"结构作用下被带离壁面, 在"扫掠" 结构和自身重力作用下回到壁面; 在湍流边界层中, 颗粒倾向于聚集在低流速带, 呈条带状分布;颗粒在大部分时间处于"簇"状态, 偶尔跳跃到"空" 状态, 但能够很快回到邻近低速区域.   相似文献   

14.
A mathematical model has been formulated based on the combined continuous and discrete particle method for investigating the sedimentation behaviour of microparticles in aqueous suspensions, by treating the fluid phase as continuous and the particles phase as discrete, thus allowing the behaviour of individual particles to be followed and the evolution of the structure of the particle phase to be investigated as a function of time. The model takes into account most of the prevailing forces acting on individual particles including van der Waals attractive, electrostatic repulsive, gravitational, Brownian, depletion, steric, contact and drag forces. A code has also been developed based on the model. This paper reports some preliminary modelling results of mono-dispersed microparticles settling in aqueous suspensions under various conditions. The results show the short time dynamics of the fluid phase, which has a similar order of magnitude to the particle phase. Such short time dynamics could bear significance to processes such as particle aggregation when their size becomes very small. Preliminary analyses of the results have also been carried out on the evolution of particle settling based on a newly proposed parameter, local normalised volume fraction (LNVF).  相似文献   

15.
Sedimentation rates are significantly enhanced when the process occurs in containers of certain shapes or orientations. For example, sedimentation in a conical vessel or a tilted tube may be several times faster than sedimentation in a vertical tube of the same height. This enhancement results from a naturally occurring convection.

Monodisperse particles were observed during settling from a viscous, incompressible, and Newtonian fluid contained beneath an upward-pointing cone. At particle concentrations of about 0.05 per cent by volume, convective velocities reach ten times the particle settling velocity, and sedimentation is complete in 40 per cent of the time necessary in a vertical tube.

Continuum fluid mechanics successfully models this settling convection. The mechanism is particle momentum transfer to fluid. The model requires numerical solution but its functionality can be investigated in terms of dimensionless parameters.  相似文献   


16.
An efficient immersed boundary-lattice Boltzmann method (IB-LBM) is proposed for fully resolved simulations of suspended solid particles in viscoelastic flows. Stress LBM based on Giesekus and Oldroyd-B constitutive equation are used to model the viscoelastic stress tensor. A boundary thickening-based direct forcing IB method is adopted to solve the particle–fluid interactions with high accuracy for non-slip boundary conditions. A universal law is proposed to determine the diffusivity constant in a viscoelastic LBM model to balance the numerical accuracy and stability over a wide range of computational parameters. An asynchronous calculation strategy is adopted to further improve the computing efficiency. The method was firstly applicated to the simulation of sedimentation of a single particle and a pair of particles after good validations in cases of the flow past a fixed cylinder and particle migration in a Couette flow against FEM and FVM methods. The determination of the asynchronous calculation strategy and the effect of viscoelastic stress distribution on the settling behaviors of one and two particles are revealed. Subsequently, 504 particles settling in a closed cavity was simulated and the phenomenon that the viscoelastic stress stabilizing the Rayleigh–Taylor instabilities was observed. At last, simulations of a dense flow involving 11001 particles, the largest number of particles to date, were performed to investigate the instability behavior induced by elastic effect under hydrodynamic interactions in a viscoelastic fluid. The elasticity-induced ordering of the particle structures and fluid bubble structures in this dense flow is revealed for the first time. These simulations demonstrate the capability and prospects of the present method for aid in understanding the complex behaviors of viscoelastic particle suspensions.  相似文献   

17.
The centrifugal separation of a mixture of particles and fluid in an axisymmetric container is examined. The flow consists of three distinct regions—mixture, sediment and purified fluid—with Ekman boundary layers at the interfaces and walls. In the settling process, the mixture and pure fluid acquire retrograde and prograde rotations relative to the tank. This flow pattern, and the shape and locus of the interface which are easily determined, provide another simple means to compare mixture theory and experiment. It is shown that when the Coriolis force is important, the pure fluid layer on the “outwardly” inclined wall is not thin. Moreover the interface between the mixture and the pure fluid is not perpendicular to the centrifugal force. Both features contrast those of the gravitational Boycott effect. As a consequence, there is no obvious enhancement of settling due to geometrical configuration.  相似文献   

18.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

19.
Particle migration in a horizontal flow of dilute suspension through a vertical slot with porous walls is studied using the two-continua approach. The lateral migration is induced by two opposite effects: an inertial lift force due to particle settling and directed toward the slot centre-line, and a drag due to leak-off entraining particles toward the walls. An expression for the inertial lift on a settling particle in a horizontal channel flow found recently is generalized to the case of a low leak-off velocity. The evolution of an initial uniform particle concentration profile is studied within the full Lagrangian approach. Four migration regimes are found differing by the direction of particle migration and numbers of equilibrium positions. Conditions of the regime change and a critical value of dimensionless leak-off velocity for particle deposition on the walls are obtained analytically. Suspension flows with zones where the particle concentration is zero or increases infinitely, are studied numerically.  相似文献   

20.
A numerical formulation for Eulerian–Lagrangian simulations of particle-laden flows in complex geometries is developed. The formulation accounts for the finite-size of the dispersed phase. Similar to the commonly used point-particle formulation, the dispersed particles are treated as point-sources, and the forces acting on the particles are modeled through drag and lift correlations. In addition to the inter-phase momentum exchange, the presence of particles affects the fluid phase continuity and momentum equations through the displaced fluid volume. Three flow configurations are considered in order to study the effect of finite particle size on the overall flowfield: (a) gravitational settling, (b) fluidization by a gaseous jet, and (c) fluidization by lift in a channel. The finite-size formulation is compared to point-particle representations, which do not account for the effect of finite-size. It is shown that the fluid displaced by the particles plays an important role in predicting the correct behavior of particle motion. The results suggest that the standard point-particle approach should be modified to account for finite particle size, in simulations of particle-laden flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号