首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 623 毫秒
1.
为研究单颗粒在旋转流场中的运动状态及受力情况,以毫米级球形颗粒为例,利用旋转流场颗粒运动装置,通过使用摄像机记录颗粒在流场中的运动轨迹以获取其运动参数,分析了不同转速和颗粒直径条件下颗粒的运动轨迹,拟合得到了颗粒运动状态判别公式以及颗粒运动轨迹公式,分析了颗粒在旋转流场中的受力情况。结果表明,颗粒在旋转流场平衡状态下运动状态主要分为两类,一类是未离开壁面保持静止,另一类是离开壁面保持稳定周向运动;颗粒进行周向运动的轨迹为椭圆形,并且圆心随着转速的增大靠近旋转中心,而随着粒径的增大靠近壁面;颗粒在旋转流场的运动过程中主要受到离心力和旋转科式力作用。  相似文献   

2.
基于浸没光滑有限元模型(immersed smooth finite element model,IS–FEM),计算球形与非球形颗粒曳力系数。设计颗粒曳力图像测量试验,验证IS–FEM模拟精度。颗粒相的运动行为基于连续介质理论的光滑有限元法求解;流体控制方程通过特征分解的半隐式有限元法求解;颗粒与流体相通过非贴体网格交换数据。结果表明,球形颗粒流场特征对称分布,非球形颗粒稳定沉降时长轴与重力方向垂直。不同雷诺数下球形颗粒的曳力系数计算值与Stokes曳力系数一致,非球形颗粒曳力系数高于等效球形颗粒,IS–FEM计算值与沉降试验吻合良好。  相似文献   

3.
颗粒流软件PFC能够很好地处理非连续介质力学的问题,模拟核级石墨的损伤和断裂过程具有独特的优势。在采用PFC2D模拟核级石墨时,为了增加模拟的便捷性,实现了PFC2D细观参数的快速标定。本文首先设计了四因素四水平的正交试验,分析了核级石墨的宏观参数与PFC2D的细观参数关系;然后基于建立的核级石墨宏细观参数的关系,采用PFC2D模拟石墨IG11的三点弯曲试验,并从位移场变形、荷载-位移曲线和断裂参数三个方面验证其宏细观参数关系的正确性。结果表明,弹性模量E随平节理模量Ec的增加线性增加;抗拉强度σt随平节理抗拉强度σb的增加线性增加;泊松比ν随平节理刚度比kn/ks的增加先增大后减小;数值模拟的位移场变化和荷载-裂缝口张开位移P-CMOD曲线与试验结果较吻合,此外,断裂参数的最大误差不超过3.57%。  相似文献   

4.
颗粒材料的宏观物理力学性能依赖于颗粒堆积体系的细观组构性能,研究颗粒堆积体系的组构性能有重要意义。然而,当前对颗粒堆积体系组构性能的研究集中于球、椭球和正则多面体等规则几何体,还未有对复杂凸多面体颗粒堆积体系组构性能的系统研究。本文基于旋转椭球面黄金螺旋网格构造了一组复杂凸多面体颗粒模型(Polyκ-ngs),然后基于松弛算法获得了Polyκ-ngs多面体的随机紧密堆积结构,最后研究了几何形状参数对Polyκ-ngs多面体随机紧密堆积体系组构性能的影响。结果表明,长径比κ和顶点数量ngs均对堆积体系的组构性能有影响,κ是主要影响因素。Polyκ-ngs多面体随机紧密堆积结构中颗粒的位置分布均匀,长径比κ越接近1,顶点数量ngs越大时,堆积结构表现出更强的位置长程有序性;颗粒方向分布不均匀,长径比κ越远离1,不均匀程度越高;最高堆积分数随长径比κ的增大先增大后减小,在κ=1时达到峰值;配位数分布服从高斯分布,平均配位数随形状参数的变化和堆积分数不同;面-面接触数量随长径比κ的增大先增大后减小,和堆积分数变化规律一致。本研究为复杂凸多面体颗粒的随机紧密堆积提供了数值模拟方案,得出的结论对含有凸多面体颗粒材料的设计和性能优化具有参考意义。  相似文献   

5.
采用计算流体力学(CFD)同"声类比"相结合的方法进行噪声模拟,利用CFD数值模拟 MD30P30N多段翼型失速攻角附近流场以及其气动特性来校核近场精度,进一步通过结合可穿透数据面的FW-H声学方程进行气动噪声分析。为了准确捕捉近场流场信息,为噪声预测提供可靠的声源精度,本文基于k-ω剪应力输运(SST)湍流模型,建立了尺度适应分离流(SAS)模型,并采用γ-Reθt转捩模型耦合k-ω SST湍流模型建立了边界层转捩数值模拟技术;充分利用尺度适应模型在边界层表现为雷诺平均(RANS)方法这一特点,将γ-Reθt转捩模型与SAS模型结合,建立针对包含转捩、分离现象复杂流场的数值模拟技术。文中以RANS为控制方程,分别采用全湍流k-ω SST模型、γ-ReθtSAS转捩/分离流模型对多段翼进行近场数值模拟计算,结合可穿透数据面的FW-H声学方程进行气动噪声预测,在分析其对流场及气动噪声影响的基础上,得出了几点结论。  相似文献   

6.
细观结构是认知土石体力学行为本质的关键科学问题。本文通过引入物理学和数学等方法,借助颗粒物质力学理论,从几何排列与接触力的空间分布来定量刻画水平固结与山前坡地堆积两种典型环境下土石体的细观结构特征,并建立其与抗剪强度指标的关联。研究表明,(1)两种环境的土石体在细观结构上存在较大差异。在几何排列上,水平固结环境下的土石体具有长程无序和短程有序的特点,坡地堆沉积环境下的土石体表现出了无序的无定形结构;在接触力与单位接触向量的空间分布上,两者较为相似,绝大多数接触力以小于均值接触力的形式存在,其概率密度曲线Pf)呈幂函数衰减;90%以上接触方位角集中在40°~160°和220°~340°范围内。(2)基于径向分布函数、接触力概率密度和单位接触向量分别定义细观结构的特征量KaKsKo,发现三个特征量的增大对内摩擦角呈线性促进作用,对黏聚力呈非线性削弱作用。  相似文献   

7.
针对一种新型螺旋内槽管,采用先进的计算流体力学(CFD)数值模拟方法,对管内的气(天然气)-液(水)-固(水合物)三相流流动特性进行了模拟研究。模型采用欧拉-欧拉-欧拉三流体模型结合颗粒动力学的理论,考察了不同的表观速度(0.3 m/s,0.5 m/s,0.7 m/s),水合物粒径(500 μm,750 μm,1000 μm),气泡大小(10 μm,100 μm,1000 μm),螺距(400 mm,800 mm),螺纹头数(12,20)及螺纹旋向对于管内三相流动特性的影响。通过数值计算,由于气液固三相间的密度差,在螺旋内槽的作用下,水合物和天然气在管中心位置聚集,同时管壁处的含量减小。流体表观流速和气泡越大,壁面处的水合物和天然气的体积分数越小;由于天然气的密度小于水合物和水的密度,天然气更多集中在管中心,越靠近管壁含量越少;颗粒的粒径越大,壁面处的水合物含量越少,而对于天然气的分布则影响不大;螺距越小,螺纹头数越多,螺旋流强度越大,气液固三相分离效果越好,壁面处的水合物和天然气的含量越小;同时,螺纹旋向的改变对于三相的分离效果影响较小。  相似文献   

8.
LBM-DEM耦合方法通常是指一种颗粒流体系统直接数值模拟算法,即是一种不引入经验曳力模型的计算方法,颗粒尺寸通常比计算网格的长度大一个量级,颗粒的受力通过表面的粘性力与压力积分获得,其优点是能描述每个颗粒周围的详细流场,产生详细的颗粒-流体相互作用的动力学信息,可以探索颗粒流体界面的流动、传递和反应的详细信息及两相相互作用的本构关系,但其缺点是计算量巨大,无法应用于真实流化床过程模拟。本文针对气固流化床中的流体以及固体颗粒间的多相流体力学行为,建立了一种稠密气固两相流的介尺度LBMDEM模型,即LBM-DEM耦合的离散颗粒模型,实现在颗粒尺度上流化床的快速离散模拟。该耦合模型采用格子玻尔兹曼方法(LBM)描述气相的流动和传递行为,离散单元法(DEM)用于描述颗粒相的运动,并利用能量最小多尺度(EMMS)曳力解决气固耦合不成熟问题,以提高其模拟精度。通过经典快速流态化的模拟,验证了介尺度LBM-DEM耦合模型的有效性。模拟结果表明介尺度LBM-DEM模型是一种探索实验室规模气固系统的有力手段。  相似文献   

9.
基于DELFT3D模型研究了清澜-八门湾潟湖的水位分布和潮汐波内部结构,以及由于人类开垦引起的海岸线变化(以1962年、1985年和2008年为例)对潟湖水动力特性的影响。结果表明,清澜-八门湾潟湖潮汐是由多种分潮耦合而成的复杂驻波,其中K1O1M2S2M4分潮的影响最大。由湾外向湾内传输,由于湾内红树林和浅滩引起的底部损耗增加,M2S2K1O1分潮幅值减弱;M4分潮幅值增强,表现出明显的浅水增幅效应;M2S2分潮相位在文教河和文昌江领域表现出明显的干湿效应。不同年代海岸线的研究表明,1985年和2008年间,人类复垦导致潟湖及其潮汐汊道附近的红树林和滩涂区域严重破坏,海岸线缩减,引发了水位降低、纳潮量减少和潟湖潮汐汊道底摩擦弱化,从而削弱了干湿、潮呛和浅水效应。后果提示持续的人类复垦活动将会引发清澜-八门湾潮汐水动力环境的进一步恶化,可能导致未来发生更大的自然灾害。  相似文献   

10.
双圆柱绕流特性的模拟研究   总被引:1,自引:0,他引:1  
刘向军  张健  林超 《力学学报》2009,41(3):300-306
采用格子Boltzmann方法对低雷诺数下气体绕流圆柱的规律进行了研究. 对比计算了双圆柱在不同圆心距、不同Re数、不同来流速度与双圆柱圆心连线角度的情况下,各个圆柱的受力大小和曳力系数. 结果表明,若Re数为20, 改变圆柱间距,圆柱间距在1.2d和1.4d之间时,下游圆柱所受曳力有极小值;双圆柱间距为1.6d时,双圆柱受到总曳力最小;圆柱间距大于2d时,上游颗粒受到的曳力不再受到下游颗粒的影响. 若圆柱间距为1.2d, 改变雷诺数,Re数在30和40之间,下游圆柱所受曳力有极小值. 另外,来流速度角度对圆柱的受力影响很大. 上述规律为低Re数下圆柱绕流的深入研究与应用打下基础.   相似文献   

11.
泥沙颗粒受到的拖曳力是泥沙运动的主要驱动力,而当前应用于计算流体力学-离散颗粒法(CFD-DPM)耦合模型进行水沙运动模拟的泥沙颗粒拖曳力公式均没有考虑明渠流底床边壁作用的影响。求解不可压缩Navier-Stokes方程,对明渠层流不同雷诺数条件下床面附近不同高度处颗粒所受拖曳力进行了模拟,根据模拟结果变化规律,提出了综合考虑床面和水流惯性对标准拖曳力影响的修正拖曳力计算公式。与常用的单颗粒标准拖曳力公式和考虑遮蔽效应的多颗粒拖曳力公式相比,采用本文修正公式得到的水沙作用力更接近高精度数值解,应用于CFD-DPM输沙模拟获得的输沙结果与输沙率公式结果一致,应用分析表明输沙模拟应当采用粗糙底床边界。  相似文献   

12.
The variation of the drag (CD) and lift coefficients (CL) of two fixed solid spherical particles placed at different positions relative each other is studied. Simulations are carried out for particle Reynolds numbers of 50, 100 and 200 and the particle position is defined by the angle between the line connecting the centers of the particles and the free-stream direction (α) and the separation distance (d0) between the particles. The flow around the particles is simulated using two different methods; the Lattice Boltzmann Method (LBM), using two different computational codes, and a conventional finite difference approach, where the Volume of Solid Method (VOS) is used to represent the particles. Comparisons with available numerical and experimental data show that both methods can be used to accurately resolve the flow field around particles and calculate the forces the particles are subjected to. Independent of the Reynolds number, the largest change in drag, as compared to the single particle case, occurs for particles placed in tandem formation. Compared to a single particle, the drag reduction for the secondary particle in tandem arrangement is as high as 60%, 70% and 80% for Re = 50, 100 and 200, respectively. The development of the recirculation zone is found to have a significant influence on the drag force. Depending on the flow situation in-between the particles for various particle arrangements, attraction and repulsion forces are detected due to low and high pressure regions, respectively. The results show that the inter-particle forces are not negligible even under very dilute conditions.  相似文献   

13.
A numerical study of history forces acting on a spherical particle in a linear shear flow, over a range of finite Re, is presented. In each of the cases considered, the particle undergoes rapid acceleration from Re1 to Re2 over a short-time period. After acceleration, the particle is maintained at Re2 in order to allow for clean extraction of drag and lift kernels. Good agreement is observed between current drag kernel results and previous investigations. Furthermore, ambient shear is found to have little influence on the drag kernel. The lift kernel is observed to be oscillatory, which translates to a non-monotonic change in lift force to the final steady state. In addition, strong dependence on the start and end conditions of acceleration is observed. Unlike drag, the lift history kernel scales linearly with Reynolds number and shear rate. This behavior is consistent with a short-time inviscid evolution. A simple expression for the lift history kernel is presented.  相似文献   

14.
Interaction between turbulence and particles is investigated in a channel flow. The fluid motion is calculated using direct numerical simulation (DNS) with a lattice Boltzmann (LB) method, and particles are tracked in a Lagrangian framework through the action of force imposed by the fluid. The particle diameter is smaller than the Kolmogorov length scale, and the point force is used to represent the feedback force of particles on the turbulence. The effects of particles on the turbulence and skin friction coefficient are examined with different particle inertias and mass loadings. Inertial particles suppress intensities of the spanwise and wall-normal components of velocity, and the Reynolds shear stress. It is also found that, relative to the reference particle-free flow, the overall mean skin-friction coefficient is reduced by particles. Changes of near wall turbulent structures such as longer and more regular streamwise low-speed streaks and less ejections and sweeps are the manifestation of drag reduction.  相似文献   

15.
Using operating principles similar to that applied in atomic force microscopes, we have developed a novel measuring method to study the aerodynamic forces, in particular the lift and drag force, acting on a small particle attached to a wall and immersed in a linear shear flow. Results thus far have shown that the system is capable of measuring both the minute aerodynamic lift and drag forces that a particle experiences as a result of the flow.C. Muthanna has also published under the name C. M. Kolera
C. MuthannaEmail:
  相似文献   

16.
Computation of a turbulent dilute gas–solid channel flow has been undertaken to study the influence of using wall-corrected drag coefficients and of the lift force on the dispersed phase characteristics. The incompressible Navier–Stokes equations governing the carrier flow were solved by using a direct numerical simulation approach and coupled with a Lagrangian particle tracking. Calculations were performed at Reynolds number based on the wall-shear velocity and channel half-width, Reτ ≈ 184, and for three different sets of solid particles. For each particle set, two cases were examined, in the first one the particle motion was governed by both drag and lift wall-corrected forces, whereas in the other one, the standard drag force (not corrected) was solely acting. The lift force model used represents the most accurate available expression since it accounts for weak and strong shear as well as for wall effects. For this study, we considered elastic collisions for particles contacting the walls and that no external forces were acting. Present results indicate that the use of the lift force and of the drag corrections does not lead to significant changes in the statistical properties of the solid phase, at the exception of some statistics for the high inertia particles.  相似文献   

17.
Recently Lee and Balachandar proposed analytically-based expressions for drag and lift coefficients for a spherical particle moving on a flat wall in a linear shear flow at finite Reynolds number. In order to evaluate the accuracy of these expressions, we have conducted direct numerical simulations of a rolling particle for shear Reynolds number up to 100. We assume that the particle rolls on a horizontal flat wall with a small gap separating the particle from the wall (L = 0.505) and thus avoiding the logarithmic singularity. The influence of the shear Reynolds number and the translational velocity of the particle on the hydrodynamic forces of the particle was investigated under both transient and the final drag-free and torque-free steady state. It is observed that the quasi-steady drag and lift expressions of Lee and Balachandar provide good approximation for the terminal state of the particle motion ranging from perfect sliding to perfect rolling. With regards to transient particle motion in a wall-bounded shear flow it is observed that the above validated quasi-steady drag and lift forces must be supplemented with appropriate wall-corrected added-mass and history forces in order to accurately predict the time-dependent approach to the terminal steady state. Quantitative comparison with the actual particle motion computed in the numerical simulations shows that the theoretical models quite effective in predicting rolling/sliding motion of a particle in a wall-bounded shear flow at moderate Re.  相似文献   

18.
A theoretical study is presented for the two-dimensional creeping flow caused by a long circular cylindrical particle translating and rotating in a viscous fluid near a large plane wall parallel to its axis. The fluid is allowed to slip at the surface of the particle. The Stokes equations for the fluid velocity field are solved in the quasi-steady limit using cylindrical bipolar coordinates. Semi-analytical solutions for the drag force and torque acting on the particle by the fluid are obtained for various values of the slip coefficient associated with the particle surface and of the relative separation distance between the particle and the wall. The results indicate that the translation and rotation of the confined cylinder are not coupled with each other. For the motion of a no-slip cylinder near a plane wall, our hydrodynamic drag force and torque results reduce to the closed-form solutions available in the literature. The boundary-corrected drag force and torque acting on the particle decrease with an increase in the slip coefficient for an otherwise specified condition. The plane wall exerts the greatest drag on the particle when its migration occurs normal to it, and the least in the case of motion parallel to it. The enhancement in the hydrodynamic drag force and torque on a translating and rotating particle caused by a nearby plane wall is much more significant for a cylinder than for a sphere.  相似文献   

19.
Fully resolved numerical simulations of a micron-sized spherical particle residing on a surface with large-scale roughness are performed by using the Lattice–Boltzmann method. The aim is to investigate the influence of surface roughness on the detachment of fine drug particles from larger carrier particles for transporting fine drug particles in a DPI (dry powder inhaler). Often the carrier surface is modified by mechanical treatments for modifying the surface roughness in order to reduce the adhesion force of drug particles. Therefore, drug particle removal from the carrier surface is equivalent to the detachment of a sphere from a rough plane surface. Here a sphere with a diameter of 5 μm at a particle Reynolds number of 1.0, 3.5 and 10 are considered. The surface roughness is described as regularly spaced semi-cylindrical asperities (with the axes oriented normal to the flow direction) on a smooth surface. The influence of asperity distance and size ratio (i.e. the radius of the semi-cylinder to the particle radius, Rc/Rd) on particle adhesion and detachment are studied. The asperity distance is varied in the range 1.2 < L/Rd < 2 and the semi-cylinder radius between 0.5 < Rc/Rd < 0.75. The required particle resolution and domain size are appropriately selected based on numerical studies, and a parametric analysis is performed to investigate the relationship between the contact distance (i.e. half the distance between the particle contact points on two neighbouring semi-cylinders), the asperity distance, the size ratio, and the height of the particle centroid from the plane wall. The drag, lift and torque acting on the spherical particle are measured for different particle Reynolds numbers, asperity distances and sizes or diameters. The detachment of particles from rough surfaces can occur through lift-off, sliding and rolling, and the corresponding detachment models are constructed for the case of rough surfaces. These studies will be the basis for developing Lagrangian detachment models that eventually should allow the optimisation of dry powder inhaler performance through computational fluid dynamics.  相似文献   

20.
A semianalytical study of the creeping flow caused by a spherical fluid or solid particle with a slip surface translating in a viscous fluid within a spherical cavity along the line connecting their centers is presented in the quasisteady limit of small Reynolds number. In order to solve the Stokes equations for the flow field, a general solution is constructed from the superposition of the fundamental solutions in the two spherical coordinate systems based on both the particle and cavity. The boundary conditions on the particle surface and cavity wall are satisfied by a collocation technique. Numerical results for the hydrodynamic drag force exerted on the particle are obtained with good convergence for various values of the ratio of particle-to-cavity radii, the relative distance between the centers of the particle and cavity, the relative viscosity or slip coefficient of the particle, and the slip coefficient of the cavity wall. In the limits of the motions of a spherical particle in a concentric cavity and near a cavity wall with a small curvature, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force exerted on the particle for all cases is a monotonic increasing function of the ratio of particle-to-cavity radii, and becomes infinite in the touching limit. For a specified ratio of particle-to-cavity radii, the drag force is minimal when the particle is situated at the cavity center and increases monotonically with its relative distance from the cavity center to infinity in the limit as it is located extremely away from the cavity center. The drag force acting on the particle, in general, increases with an increase in its relative viscosity or with a decrease in its slip coefficient for a given configuration, but surprisingly, there are exceptions when the ratio of particle-to-cavity radii is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号