首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
风力机翼型动态失速等离子体流动控制数值研究   总被引:3,自引:3,他引:0  
针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.   相似文献   

2.
针对动态失速引起的风力机翼型气动性能恶化的问题,本文基于动网格和滑移网格技术, 开展了大涡模拟数值计算研究,探索了非定常脉冲等离子体的动态流动控制机理. 结果表明,等离子体气动激励能够有效控制翼型动态失速, 改善平均和瞬态气动力,减小力矩负峰值和迟滞环面积. 压力分布在等离子体施加范围内出现了负压"凸起",上翼面吸力峰值明显增大.脉冲频率和占空比这两个非定常控制参数对流动控制影响显著,无因次脉冲频率为1.5时等离子体控制效果较好,占空比为0.8时即可接近连续工作模式下的气动收益. 翼型深失速状态,等离子体促使流动分离位置明显向后缘移动, 抵抗了大尺度动态失速涡的发生,分离涡结构破碎耗散、重新附着, 涡流影响范围减小; 浅失速状态,等离子体激励具有较强的剪切层操纵能力, 诱导了翼型边界层提前转捩,促进了与主流的动量掺混. 等离子体气动激励诱导出前缘附近贴体翼面"涡簇",起到了虚拟气动外形的作用.不同尺度、频域的动态涡结构与等离子体气动激励的非线性、强耦合作用导致了气动力/力矩的谐波振荡.  相似文献   

3.
多喷口高效能厚翼的研究   总被引:1,自引:0,他引:1  
王春雨  孙茂 《力学学报》1999,31(5):611-617
提出了以下高效能翼型的思想:用多喷口小速度切向吹气控制厚翼上的流动分离,使流动接近于理想流状况,以产生大升力,小阻力;因多喷口小速度吹气耗能小,故翼型的有效升阻比可以很大.基于雷诺平均N-S方程进行了数值模拟实验.主要结果表明:对于厚度为0.4的儒氏翼型,在升力系数高达3.5时,有效升阻比可达约50(单喷口吹气约为23);对于厚度为0.4的"升力体"翼型,在升力系数达2.2时,有效升阻比可达40(喷口吹气约为10).  相似文献   

4.
Two techniques that improve the aerodynamic performance of wind turbine airfoils are described. The airfoil S809, designed specially for wind turbine blades, and the airfoil FX60-100, having a higher lift-drag ratio, are selected to verify the flow control techniques. The flow deflector, fixed at the leading edge, is employed to control the boundary layer separation on the airfoil at a high angle of attack. The multi-island genetic algorithm is used to optimize the parameters of the flow deflector. The results indicate that the flow deflector can suppress the flow separation, delay the stall, and enhance the lift. The characteristics of the blade tip vortex, the wake vortex, and the surface pressure distributions of the blades are analyzed. The vortex diffuser, set up at the blade tip, is employed to control the blade tip vortex. The results show that the vortex diffuser can increase the total pressure coefficient of the core of the vortex, decrease the strength of the blade tip vortex, lower the noise, and improve the efficiency of the blade.  相似文献   

5.
二维扩压叶栅非定常分离流控制途径探索   总被引:11,自引:1,他引:11  
郑新前  侯安平  周盛 《力学学报》2003,35(5):599-605
二维扩压叶栅非定常黏性数值模拟结果表明,在一定攻角范围内,叶片前缘点附近的周期性吹吸气激励能有效控制混乱的非定常分离流.详细研究了非定常激励频率、幅值、位置对流场的影响.满足一定条件的非定常激励能够使流动由无序变为有序,时均气动性能提高。  相似文献   

6.
A specially adapted schlieren system is used to generate fluctuating signals which respond strongly to large scale coherent components of a turbulent mixing jet flow and which have a relatively reduced response to random disturbances. The schlieren signals also provide a direct indication of the presence of vortex-like structures in the turbulent mixing layers by virtue of the phase relationship of the schlieren signals to the pressure field. This system gives a clear resolution of the fluctuating periodic effects associated with vortex structures in the flow from a choked convergent nozzle. It has thus been possible to determine that vortex-like eddies are associated with the feedback screech mechanism, and also generate periodic disturbances due to their passage through the diamond shaped wave structure in the flow. The regular disturbances in the flow move at 0.77 of the fully expanded flow velocity. Phase spectral observations demonstrate clearly the vortex like structure of coherent disturbances in the flow by virtue of the quadrature phase relation between the schlieren and microphone signals. Movement of the sensing microphone in the pressure field external to the flow shows disturbance propagation at the acoustic velocity, and also shows that disturbances at Strouhal numbers above 0.7 emanating from the inner mixing zone can be identified by an additional time delay to reach the microphone and only influence the microphone when it is located downstream of the flow sensing schlieren system due to confinement of pressure disturbances within Mach cones of the flow.  相似文献   

7.
Controlled concentrations of trapped vorticity within an offset, subsonic (MAIP ≤ 0.7) diffuser are explored for active suppression of flow distortion in joint experimental and numerical investigations. The coupling between trapped vorticity, used to model boundary-layer separation, and secondary-flow vortices is manipulated using an array of fluidic oscillating jets, which are spanwise distributed just upstream of the trapped vortex. Actuation energizes the separated shear layer, reducing the size of separation and effecting an earlier reattachment of the boundary layer, which favorably effects the flow field downstream of reattachment. It is shown that optimal interactions between actuation and the trapped vortex fully suppress the central vortex pair, and redistributes the residual vorticity around the diffuser's circumference. This results in a 68% reduction in circumferential distortion at the Aerodynamic Interface Plane (AIP), using an actuation mass flow rate that is only 0.25% of the diffuser mass flow rate.  相似文献   

8.
Scanning PIV is applied to a laminar separation bubble to investigate the spanwise structure and dynamics of the roll-up of vortices within the bubble. The laminar flow separation with turbulent reattachment is studied on the suction side of an airfoil SD7003 at Reynolds numbers of 20,000–60,000. The flow is recorded with a CMOS high-speed camera in successive light-sheet planes over a time span of 1–2 s to resolve the temporal evolution of the flow in the different planes. The results show the quasi-periodic development of large vortex-rolls at the downstream end of the separation bubble, which have a convex structure and an extension of 10–20% chord length in the spanwise direction. These vortices possess an irregular spanwise pattern. The evolution process of an exemplary vortex structure is shown in detail starting from small disturbances within the separation bubble transforming into a compact vortex at the downstream end of the separation bubble. As the vortex grows in size and strength it reaches a critical state that leads to an abrupt burst of the vortex with a large ejection of fluid into the mean flow.  相似文献   

9.
The generation of control moments without moving control surfaces is of great practical importance. Following a successful flight demonstration of creating roll motion without ailerons using differential, lift oriented, flow control the current study is a first step towards generating yawing motion via differential flow controlled drag.A wind tunnel study was conducted on a 21% thick Glauert type airfoil. The upper surface flow is partially separated from the two-thirds chord location and downstream on this airfoil at all incidence angles. An array of mass-less Piezo-fluidic actuators, located at x/c = 0.65, are capable of fully reattaching the flow in a gradual, controlled manner. The actuators are individually operated such that the boundary layer could be controlled in a 3D fashion.Several concepts for creating yaw motion without moving control surface are examined. The ultimate goal is to generate the same lift on both wings, while decreasing the drag on one wing and increasing the drag on the other, therefore creating a yawing moment. Decreased drag is created by effective part-span separation delay while increased drag can be created by enhanced generation of vortex shedding or by highly localized 3D actuation.Detailed measurements of 3D surface pressure distributions and wake data with three velocity and streamwise vorticity components are presented and discussed along with surface flow visualization images. The data provide evidence that yawing moments can be generated with AFC.  相似文献   

10.
Direct numerical simulations of separating flow along a section at midspan of a low-pressure V103 compressor cascade with periodically incoming wakes were performed. By varying the strength of the wake, its influence on both boundary layer separation and bypass transition were examined. Due to the presence of small-scale three-dimensional fluctuations in the wakes, the flow along the pressure surface undergoes bypass transition. Only in the weak-wake case, the boundary layer reaches a nearly-separated state between impinging wakes. In all simulations, the flow along the suction surface was found to separate. In the simulation with the strong wakes, separation is intermittently suppressed as the periodically passing wakes managed to trigger turbulent spots upstream of the location of separation. As these turbulent spots convect downstream, they locally suppress separation.  相似文献   

11.
由仿生学原理构建的可渗透翼型对湍流气动噪声抑制作用已展现良好的应用前景。对NACA 0012可渗透翼型和实体翼型进行了数值计算,得到了声涡相互作用下气动噪声声场和流场,分析了可渗透壁对翼型流场和声场的影响。研究表明,相对实体翼型,可渗透壁通过减小声源强度降低了主纯音噪声声压级幅值和远场总声压级,消除了高阶离散纯音,但对噪声的指向性没有较大改变。进一步的流场分析表明,可渗透壁对翼型气动性能影响不大的情况下能够降低边界层扰动和翼型后缘大尺度涡旋强度,并推迟分离泡转捩和再附位置。  相似文献   

12.
To comprehensively understand the effects of Kelvin–Helmholtz instabilities on a transitional separation bubble on the suction side of an airfoil regarding as to flapping of the bubble and its impact on the airfoil performance, the temporal and spatial structure of the vortices occurring at the downstream end of the separation bubble is investigated. Since the bubble variation leads to a change of the pressure distribution, the investigation of the instantaneous velocity field is essential to understand the details of the overall airfoil performance. This vortex formation in the reattachment region on the upper surface of an SD7003 airfoil is analyzed in detail at different angles of attack. At a Reynolds number Re c < 100,000 the laminar boundary layer separates at angles of attack >4°. Due to transition processes, turbulent reattachment of the separated shear layer occurs enclosing a locally confined recirculation region. To identify the location of the separation bubble and to describe the dynamics of the reattachment, a time-resolved PIV measurement in a single light-sheet is performed. To elucidate the spatial structure of the flow patterns in the reattachment region in time and space, a stereo scanning PIV set-up is applied. The flow field is recorded in at least ten successive light-sheet planes with two high-speed cameras enclosing a viewing angle of 65° to detect all three velocity components within a light-sheet leading to a time-resolved volumetric measurement due to a high scanning speed. The measurements evidence the development of quasi-periodic vortex structures. The temporal dynamics of the vortex roll-up, initialized by the Kelvin–Helmholtz (KH) instability, is shown as well as the spatial development of the vortex roll-up process. Based on these measurements a model for the evolving vortex structure consisting of the formation of c-shape vortices and their transformation into screwdriver vortices is introduced.  相似文献   

13.
During the mixing of viscous incompressible flows with different velocities, in the vicinity of a trailing edge an interaction region with a three-layer structure is formed, similar to that in the case of symmetric shedding with equal velocities. The boundary layers developing on the upper and lower sides of the airfoil form a viscous mixing layer, or vortex sheet, which separates the flows downstream of the trailing edge. The boundary value problem corresponding to the flow in the viscous sublayer in the vicinity of the trailing edge of a flat plate is solved for high Reynolds numbers using an efficient numerical method for solving the equations of asymptotic interaction theory.  相似文献   

14.
This paper reports experimental results on using steady and unsteady plasma aerodynamic actuation to control the corner separation, which forms over the suction surface and end wall corner of a compressor cascade blade passage. Total pressure recovery coefficient distribution was adopted to evaluate the corner separation. Corner separation causes significant total pressure loss even when the angle of attack is 0°. Both steady and unsteady plasma aerodynamic actuations suppress the corner separation effectively. The control effect obtained by the electrode pair at 25% chord length is as effective as that obtained by all four electrode pairs. Increasing the applied voltage improves the control effect while it augments the power requirement. Increasing the Reynolds number or the angle of attack makes the corner separation more difficult to control. The unsteady actuation is much more effective and requires less power due to the coupling between the unsteady actuation and the separated flow. Duty cycle and excitation frequency are key parameters in unsteady plasma flow control. There are thresholds in both the duty cycle and the excitation frequency, above which the control effect saturates. The maximum relative reduction in total pressure loss coefficient achieved is up to 28% at 70% blade span. The obvious difference between steady and unsteady actuation may be that wall jet governs the flow control effect of steady actuation, while much more vortex induced by unsteady actuation is the reason for better control effect.  相似文献   

15.
Active control of flow separation over an airfoil using synthetic jets   总被引:1,自引:0,他引:1  
We perform large-eddy simulation of turbulent flow separation over an airfoil and evaluate the effectiveness of synthetic jets as a separation control technique. The flow configuration consists of flow over an NACA 0015 airfoil at Reynolds number of 896,000 based on the airfoil chord length and freestream velocity. A small slot across the entire span connected to a cavity inside the airfoil is employed to produce oscillatory synthetic jets. Detailed flow structures inside the synthetic-jet actuator and the synthetic-jet/cross-flow interaction are simulated using an unstructured-grid finite-volume large-eddy simulation solver. Simulation results are compared with the 2005 experimental data of Gilarranz et al., and qualitative and quantitative agreements are obtained for both uncontrolled and controlled cases. As in the experiment, the present large-eddy simulation confirms that synthetic-jet actuation effectively delays the onset of flow separation and causes a significant increase in the lift coefficient. Modification of the blade boundary layer due to oscillatory blowing and suction and its role in separation control is discussed.  相似文献   

16.
壁面对串列双圆柱尾迹影响的实验研究   总被引:1,自引:0,他引:1  
陈波  李万平 《实验力学》2011,26(4):404-410
为研究壁面对近壁等直径串列双圆柱尾迹特性的影响,用PIV和压力传感器测量尾迹湍流的涡结构及频谱.实验在循环水槽内进行,基于圆柱直径D的雷诺数为1696,壁面边界层厚度为6.6D.影响尾迹流场结构的两个重要的特征参数是T/D和G/D(T为两圆柱中心间的距离,G为圆柱下表面与壁面间的距离),文中主要考察G/D的影响.实验中...  相似文献   

17.
针对所设计的三角形涡流发生器开展用于翼型失速流动控制的风洞实验研究,重点讨论涡流发生器几何参数、方向角、安装位置及实验雷诺数等因素对翼型失速流动控制的影响。实验结果表明:涡流发生器作用下,在干净翼失速迎角后能够形成一个升力几乎不随迎角变化的相对稳定的高升力状态,抑制了失速流动的发生,与此同时阻力大幅下降;本文所设计的涡流发生器方向角过大时会削弱翼型失速流动控制的效果;同一涡流发生器作用下雷诺数过大其失速流动控制效果会急剧恶化,第一种涡流发生器控制翼型失速的雷诺数有效范围略宽于第二种涡流发生器。  相似文献   

18.
湍流一般机理及其应用   总被引:2,自引:0,他引:2  
杨文熊 《力学进展》1992,22(4):489-495
本文综述了湍流机理发展中最重要的一些文章,包括:Brown-Roshko的混合剪切层中大尺度涡的发展;Perry和Chong的湍流边界层中A形涡结构的湍流机理;以及笔者提出的关于3维湍流场中涡结构的涡量脉动对流和扩散并存的一般机理。在一般机理基础上建立了判别流场的准则,列举了在固壁边界附近的猝发现象并展望它的未来应用。   相似文献   

19.
Effects of micro-ramps on a shock wave/turbulent boundary layer interaction   总被引:2,自引:0,他引:2  
Stereoscopic particle image velocimetry is used to investigate the effects of micro-ramp sub-boundary layer vortex generators, on an incident shock wave/boundary layer interaction at Mach 1.84. Single- and double-row arrangements of micro-ramps are considered. The micro-ramps have a height of 20% of the unperturbed boundary layer thickness and the measurement planes are located 0.1 and 0.6 boundary layer thicknesses from the wall. The micro-ramps generate packets of individual vortex pairs downstream of their vertices, which produce counter-rotating longitudinal streamwise vortex pairs in a time-averaged view. These structures induce a pronounced spanwise variation of the flow properties, namely the mixing across the boundary layer interface. The probability of reversed-flow occurrence is decreased by 20 and 30% for the single- and double-row configurations, respectively. Both configurations of micro-ramps stabilize the shock motion by reducing the length of its motion by about 20% in the lower measurement plane. The results are summarized by a conceptual model describing the boundary layer’s and interaction’s flow pattern under the effect of the micro-ramps.  相似文献   

20.
An algorithm for eliminating flow separation in the nose region of a symmetric airfoil section at nonzero angle of incidence is proposed. Below the separation-prone region of the section, to increase the critical angle of incidence, a vortex cell with a cylinder rotating inside is located. The shape of the vortex cell and the precise location of the cylinder are so chosen as to create the same pressure gradient in the mixing layer as in the external flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号