首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Extending fixed‐grid time integration schemes for unsteady CFD applications to moving grids, while formally preserving their numerical stability and time accuracy properties, is a nontrivial task. A general computational framework for constructing stability‐preserving ALE extensions of Eulerian multistep time integration schemes can be found in the literature. A complementary framework for designing accuracy‐preserving ALE extensions of such schemes is also available. However, the application of neither of these two computational frameworks to a multistage method such as a Runge–Kutta (RK) scheme is straightforward. Yet, the RK methods are an important family of explicit and implicit schemes for the approximation of solutions of ordinary differential equations in general and a popular one in CFD applications. This paper presents a methodology for filling this gap. It also applies it to the design of ALE extensions of fixed‐grid explicit and implicit second‐order time‐accurate RK (RK2) methods. To this end, it presents the discrete geometric conservation law associated with ALE RK2 schemes and a method for enforcing it. It also proves, in the context of the nonlinear scalar conservation law, that satisfying this discrete geometric conservation law is a necessary and sufficient condition for a proposed ALE extension of an RK2 scheme to preserve on moving grids the nonlinear stability properties of its fixed‐grid counterpart. All theoretical findings reported in this paper are illustrated with the ALE solution of inviscid and viscous unsteady, nonlinear flow problems associated with vibrations of the AGARD Wing 445.6. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Two difficulties are clearly identified for high‐order extensions of ALE schemes for Euler equations: strict respect of the maximum principle and preservation of the Galilean invariance. We deal with these two issues in this paper. Our approach is closely related to the concepts of a posteriori limiting and convex hull spanning. We introduce the notion of local convex hull preservation schemes, which embodies these two concepts. We lean on this notion to propose a fully Galilean invariant ALE scheme. Moreover, we provide a new limiter (called Apitali for A Posteriori ITerAtive LImiter) for the remap step, enforcing the local convex hull preservation property. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this study, an arbitrary Lagrangian–Eulerian (ALE) approach is incorporated with a mixed finite‐volume–element (FVE) method to establish a novel moving boundary method for simulating unsteady incompressible flow on non‐stationary meshes. The method collects the advantages of both finite‐volume and finite‐element (FE) methods as well as the ALE approach in a unified algorithm. In this regard, the convection terms are treated at the cell faces using a physical‐influence upwinding scheme, while the diffusion terms are treated using bilinear FE shape functions. On the other hand, the performance of ALE approach is improved by using the Laplace method to improve the hybrid grids, involving triangular and quadrilateral elements, either partially or entirely. The use of hybrid FE grids facilitates this achievement. To show the robustness of the unified algorithm, we examine both the first‐ and the second‐order temporal stencils. The accuracy and performance of the extended method are evaluated via simulating the unsteady flow fields around a fixed cylinder, a transversely oscillating cylinder, and in a channel with an indented wall. The numerical results presented demonstrate significant accuracy benefits for the new hybrid method on coarse meshes and where large time steps are taken. Of importance, the current method yields the second‐order temporal accuracy when the second‐order stencil is used to discretize the unsteady terms. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
This paper proposes implicit Runge–Kutta (IRK) time integrators to improve the accuracy of a front‐tracking finite‐element method for viscous free‐surface flow predictions. In the front‐tracking approach, the modeling equations must be solved on a moving domain, which is usually performed using an arbitrary Lagrangian–Eulerian (ALE) frame of reference. One of the main difficulties associated with the ALE formulation is related to the accuracy of the time integration procedure. Indeed, most formulations reported in the literature are limited to second‐order accurate time integrators at best. In this paper, we present a finite‐element ALE formulation in which a consistent evaluation of the mesh velocity and its divergence guarantees satisfaction of the discrete geometrical conservation law. More importantly, it also ensures that the high‐order fixed mesh temporal accuracy of time integrators is preserved on deforming grids. It is combined with the use of a family of L‐stable IRK time integrators for the incompressible Navier–Stokes equations to yield high‐order time‐accurate free‐surface simulations. This is demonstrated in the paper using the method of manufactured solution in space and time as recommended in Verification and Validation. In particular, we report up to fifth‐order accuracy in time. The proposed free‐surface front‐tracking approach is then validated against cases of practical interest such as sloshing in a tank, solitary waves propagation, and coupled interaction between a wave and a submerged cylinder. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, we present a conservative, positivity‐preserving, high‐resolution nonlinear ALE‐flux‐corrected transport (FCT) scheme for reactive transport models in moving domains. The mathematical model is a convection–diffusion equation with a nonlinear flux equation on the moving channel wall. The reactive transport is assumed to have dominant Péclet and Damköhler numbers, a phenomenon that often results in non‐physical negative solutions. The scheme presented here is proven to be mass conservative in time and positive at all times for a small enough Δt. Reactive transport examples are simulated using this scheme for its validation, to show its convergence, and to compare it against the linear ALE‐FCT scheme. The nonlinear ALE‐FCT is shown to perform better than the linear ALE‐FCT schemes for large time steps. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper concerns the modelling of dynamically loaded journal bearing systems using a moving spectral element method. The moving grid method employed in this paper is the arbitrary Lagrangian–Eulerian (ALE) method. The ALE methodology is compared with a quasi‐Eulerian approach in the context of dynamically loaded journal bearings and the advantages of adopting the ALE formulation are highlighted. A comparison with the predictions of lubrication theory is also presented and the limitations of the lubrication approximation are demonstrated when inertial effects are significant. A comprehensive set of results is presented illustrating the salient features of the spectral element mesh generation schemes described in the paper and the way in which these impinge on the efficiency of the iterative solution of the discrete equations at each time step. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
8.
We use here a reconnection ALE (ReALE) strategy to solve hydrodynamic compressible flows in cylindrical geometries. The main difference between the classical ALE and the ReALE method is the rezoning step where we allow change in the topology. This leads for ReALE to a polygonal mesh, which follows more efficiently the flow. We present here a new displacement of generators in order to keep the Lagrangian features, which are usually lost using ALE with fixed topology. The reconnection capability allows to deal with complex geometries and high‐vorticity problems contrary to ALE method. The main difficulty of ReALE is the remapping step where we have to remap physical variables on a mesh with a different topology. For this step, a new remapping method based on a swept intersection algorithm has been developed in the case of planar geometries. We present here the extension of the swept intersection‐based remapping method to cylindrical geometries. We demonstrate that our method can be applied to several numerical examples up to problem representative of hydrodynamic experiments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
The general axisymmetric problem involves three photoelastic unknowns. Experiment yields two of these factors: the characteristic retardation and the characteristic direction. A third independent condition is thus required for the solution. Two cases for which this information can be easily obtained are considered here. They are the stress-frozen cases, i.e., μ=0.5, and some restricted cases of thermal stresses which obey the sum rule, i.e., . A new approach to the solution which involves expressing the radial displacement (the key factor in such analyses) and the shear stress as separate polynomials is presented. The results are compared with earlier solutions.  相似文献   

10.
In this article, a new methodology for developing discrete geometric conservation law (DGCL) compliant formulations is presented. It is carried out in the context of the finite element method for general advective–diffusive systems on moving domains using an ALE scheme. There is an extensive literature about the impact of DGCL compliance on the stability and precision of time integration methods. In those articles, it has been proved that satisfying the DGCL is a necessary and sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of its fixed‐grid counterpart. However, only a few works proposed a methodology for obtaining a compliant scheme. In this work, a DGCL compliant scheme based on an averaged ALE Jacobians formulation is obtained. This new formulation is applied to the θ family of time integration methods. In addition, an extension to the three‐point backward difference formula is given. With the aim to validate the averaged ALE Jacobians formulation, a set of numerical tests are performed. These tests include 2D and 3D diffusion problems with different mesh movements and the 2D compressible Navier–Stokes equations. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
ALE方法在爆炸数值模拟中的应用   总被引:7,自引:0,他引:7  
张奇  张若京 《力学季刊》2005,26(4):639-642
本文以ALE(Arbitrary Lagrange—Euler)理论为基础,结合非线性动力学的相关理论,推导了ALE方法描述的控制方程组。最后采用ALE描述方法针对集团装药在半无限土质中爆炸进行了数值模拟,并将模拟计算结果与现有实验研究成果进行了对比。在模拟给出的最大压力时程曲线和爆腔发展时程曲线的基础上,对空腔的形成和发展规律以及次生波的形成等问题进行了研究。通过对比,证明ALE算法综合了Lagrange和Euler法的优点,能够有效地用于对爆炸过程进行数值模拟。  相似文献   

12.
Recent years have witnessed the application of topology optimization to flexible multibody systems (FMBS) so as to enhance their dynamic performances. In this study, an explicit topology optimization approach is proposed for an FMBS with variable-length bodies via the moving morphable components (MMC). Using the arbitrary Lagrangian–Eulerian (ALE) formulation, the thin plate elements of the absolute nodal coordinate formulation (ANCF) are used to describe the platelike bodies with variable length. For the thin plate element of ALE–ANCF, the elastic force and additional inertial force, as well as their Jacobians, are analytically deduced. In order to account for the variable design domain, the sets of equivalent static loads are reanalyzed by introducing the actual and virtual design domains so as to transform the topology optimization problem of dynamic response into a static one. Finally, the novel MMC-based topology optimization method is employed to solve the corresponding static topology optimization problem by explicitly evolving the shapes and orientations of a set of structural components. The effect of the minimum feature size on the optimization of an FMBS is studied. Three numerical examples are presented to validate the accuracy of the thin plate element of ALE–ANCF and the efficiency of the proposed topology optimization approach, respectively.  相似文献   

13.
A recently proposed analogue transformation method has allowed the extension of transformation acoustics to general space–time transformations. We analyze here in detail the differences between this new analogue transformation acoustics (ATA) method and the standard one (STA). We show explicitly that STA is not suitable for transformations that mix space and time. ATA takes as starting point the acoustic equation for the velocity potential, instead of that for the pressure as in STA. This velocity-potential equation by itself already allows for some transformations mixing space and time, but not all of them. We explicitly obtain the entire set of transformations that leave its form invariant. It is for the rest of transformations that ATA shows its true potential, allowing for building a transformation acoustics method that enables the full range of space–time transformations. We provide an example of an important transformation which cannot be achieved with STA. Using this transformation, we design and simulate an acoustic frequency converter via the ATA approach. Furthermore, in those cases in which one can apply both the STA and ATA approaches, we study the different transformational properties of the corresponding physical quantities.  相似文献   

14.
Extrudate swell is a common phenomenon observed in the polymer extrusion industry. Accurate prediction of the dimensions of an extrudate is important for appropriate design of dies for profile extrusion applications. Prediction of extrudate swell has been challenging due to (i) difficulties associated with accurate representation of the constitutive behavior of polymer melts, and (ii) difficulties associated with the simulation of free surfaces, which requires special techniques in the traditionally used Eulerian framework. In a previous work we had argued that an Arbitrary Lagrangian Eulerian (ALE) based finite element formulation may have advantages in simulating free surface deformations such as in extrudate swell. In the present work we reinforce this argument by comparing our ALE simulations with experimental data on the extrudate swell of commercial grades of linear polyethylene (LLDPE) and branched polyethylene (LDPE). Rheological behavior of the polymers was characterized in shear and uniaxial extensional deformations, and the data was modeled using either the Phan–Thien Tanner (PTT) model or the eXtended Pom–Pom (XPP) model. Additionally, flow birefringence and pressure drop measurements were done using a 10:1 contraction–expansion (CE) slit geometry in a MultiPass Rheometer. Simulated pressure drop and contours of the principal stress difference were compared with experimental data and were found to match well. This provided an independent test for the accuracy of the ALE code and the constitutive equations for simulating a processing-like flow. The polymers were extruded from long (L/D = 30) and short (L/D = 10) capillaries dies at 190 °C. ALE simulations were performed for the same extrusion conditions and the simulated extrudate swell showed good agreement with the experimental data.  相似文献   

15.
In this study, we investigate the growth of bubbles within predominately extensional-deformation flows of thin film stretching form. This involves more than one free-surface to the flow (multiple surfaces), typically as inner (bubble) and outer (filament) boundaries that introduces fluid–gas interfacial treatment. Various bubble initial states and locations may be considered. The problem is discretised in space–time through a hybrid-finite element/volume pressure-correction formulation, coupled with an arbitrary Lagrangian–Eulerian (ALE) coupled with VOF scheme to track domain-mesh and free-surface movement. We contrast these results against the results from a complete ALE algorithm. Various fluid-filament materials have been considered, covering such properties as constant viscosity fluids (Newtonian), low-polymeric/high-solvent viscosity Boger-type (Oldroyd-B) fluids and high-polymeric/low-solvent viscosity elastic-type fluids (Oldroyd-B and Phan-Thien/Tanner). Numerical solutions are presented in terms of comparison between algorithms (ALE versus hybrid ALE/VOF), shapes (bubble shapes, filament shapes), contours of extra-stress (magnitude and location), mid-filament radius and extensional viscosity.  相似文献   

16.
In this work we discuss a way to compute the impact of free-surface flow on nonlinear structures. The approach chosen relies on a partitioned strategy that allows us to solve the strongly coupled fluid–structure interaction problem. It is then possible to re-use the existing and validated strategy for each sub-problem. The structure is formulated in a Lagrangian way and solved by the finite element method. The free-surface flow approach considers a Volume-Of-Fluid (VOF) strategy formulated in an Arbitrary Lagrangian–Eulerian (ALE) framework, and the finite volume is used to discrete and solve this problem. The software coupling is ensured in an efficient way using the Communication Template Library (CTL). Numerical examples presented herein concern the 2D validation case but also 3D problems with a large number of equations to be solved.  相似文献   

17.
Large eddy simulation (LES) models for flamelet combustion are analyzed by simulating premixed flames in turbulent stagnation zones. ALES approach based on subgrid implementation of the linear eddy model(LEM) is compared with a more conventional approach based on the estimation of the turbulent burning rate. The effects of subgrid turbulence are modeled within the subgrid domain in the LEM-LES approach and the advection (transport between LES cells) of scalars is modeled using a volume-of-fluid (VOF) Lagrangian front tracking scheme. The ability of the VOF scheme to track the flame as a thin front on the LES grid is demonstrated. The combined LEM-LES methodology is shown to be well suited for modeling premixed flamelet combustion. The geometric characteristics of the flame surfaces, their effects on resolved fluid motion and flame-turbulence interactions are well predicted by the LEM-LES approach. It is established here that local laminar propagation of the flamelets needs to be resolved in addition to the accurate estimation of the turbulent reaction rate. Some key differences between LEM-LES and the conventional approach(es) are also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
In this paper, we present an analytical solution for the multi-qubit Rabi model for the general case without the rotating wave approximation. We discuss three different cases, one-qubit, two-qubit and three-qubit Rabi model, as applications to the presented solution. In addition, we study the effect of the qubit-photon coupling constants and the detuning parameters on the information entropies \(H(\sigma _{X})\), \(H(\sigma _{Y})\) and \(H(\sigma _{Z}),\) by which we note that, in the case of two-qubit Rabi model, there are collapse and revivals in the curves of the information entropies \(H(\sigma _{Z})\) and \(H(\sigma _{X})\) that vary in their numbers and amplitudes depending on the detuning parameter. The effects of the coupling constants and the detuning parameters on other cases are discussed. Besides, we explain that the dynamic nonlinear properties of the system have strong proportional relationship with the number of atoms.  相似文献   

19.
For simulating freely moving problems, conventional immersed boundary‐lattice Boltzmann methods encounter two major difficulties of an extremely large flow domain and the incompressible limit. To remove these two difficulties, this work proposes an immersed boundary‐lattice Boltzmann flux solver (IB‐LBFS) in the arbitrary Lagragian–Eulerian (ALE) coordinates and establishes a dynamic similarity theory. In the ALE‐based IB‐LBFS, the flow filed is obtained by using the LBFS on a moving Cartesian mesh, and the no‐slip boundary condition is implemented by using the boundary condition‐enforced immersed boundary method. The velocity of the Cartesian mesh is set the same as the translational velocity of the freely moving object so that there is no relative motion between the plate center and the mesh. This enables the ALE‐based IB‐LBFS to study flows with a freely moving object in a large open flow domain. By normalizing the governing equations for the flow domain and the motion of rigid body, six non‐dimensional parameters are derived and maintained to be the same in both physical systems and the lattice Boltzmann framework. This similarity algorithm enables the lattice Boltzmann equation‐based solver to study a general freely moving problem within the incompressible limit. The proposed solver and dynamic similarity theory have been successfully validated by simulating the flow around an in‐line oscillating cylinder, single particle sedimentation, and flows with a freely falling plate. The obtained results agree well with both numerical and experimental data. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
If alloys undergo an incoherent martensitic transformation, then plastic accommodation and relaxation accompany the transformation. To capture these mechanisms we develop an improved 3D microelastic–plastic phase-field model. It is based on the classical concepts of phase-field modeling of microelastic problems (Chen, L.Q., Wang Y., Khachaturyan, A.G., 1992. Philos. Mag. Lett. 65, 15–23). In addition to these it takes into account the incoherent formation of accommodation dislocations in the austenitic matrix, as well as their inheritance into the martensitic plates based on the crystallography of the martensitic transformation. We apply this new phase-field approach to the butterfly-type martensitic transformation in a Fe–30 wt%Ni alloy in direct comparison to recent experimental data (Sato, H., Zaefferer, S., 2009. Acta Mater. 57, 1931–1937). It is shown that the therein proposed mechanisms of plastic accommodation during the transformation can indeed explain the experimentally observed morphology of the martensitic plates as well as the orientation between martensitic plates and the austenitic matrix. The developed phase-field model constitutes a general simulations approach for different kinds of phase transformation phenomena that inherently include dislocation based accommodation processes. The approach does not only predict the final equilibrium topology, misfit, size, crystallography, and aspect ratio of martensite–austenite ensembles resulting from a transformation, but it also resolves the associated dislocation dynamics and the distribution, and the size of the crystals itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号