首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pth moment Lyapunov exponent of a two-codimension bifurcation system excited parametrically by a real noise is investigated. By a linear stochastic transformation, the differential operator of the system is obtained. In order to evaluate the asymptotic expansion of the moment Lyapunov exponent, via a perturbation method, a ralevant eigenvalue problem is obtained. The eigenvalue problem is then solved by a Fourier cosine series expansion, and an infinite matrix is thus obtained, whose leading eigenvalue is the second-order of the asymptotic expansion of the moment Lyapunov exponent. Finally, the convergence of procedure is numerically illustrated, and the effects of the system and the noise parameters on the moment Lyapunov exponent are discussed.  相似文献   

2.
Xie  Wei-Chau  So  Ronald M.C. 《Nonlinear dynamics》2004,36(2-4):437-453
The dynamic stability of a two-dimensional system under bounded noise excitation with a narrow band characteristic is studied through the determination of the pth moment Lyapunov exponent and the Lyapunov exponent. The case when the system is in primary parametric resonance in the absence of noise is considered and the effect of noise on the parametric resonance is investigated. The partial differential eigenvalue problem governing the moment Lyapunov exponent is established. For small amplitudes of the bounded noise, a method of singular perturbation is applied to determine analytical expansions of the moment Lyapunov exponents and Lyapunov exponents, which are shown to be in excellent agreement with those obtained using numerical approaches.  相似文献   

3.
In this paper, the analysis problem of adaptive exponential synchronization in pth moment is considered for stochastic complex networks with time varying multi-delayed coupling. By using the Lyapunov–Krasovskii functional, stochastic analysis theory, several sufficient conditions to ensure the mode adaptive exponential synchronization in pth moment for stochastic delayed complex networks are derived. To illustrate the effectiveness of the synchronization conditions derived in this paper, a numerical example is finally provided.  相似文献   

4.
For a co-dimension two bifurcation system on a three-dimensional central manifold, which is parametrically excited by a real noise, a rather general model is obtained by assuming that the real noise is an output of a linear filter system-a zeromean stationary Gaussian diffusion process which satisfies detailed balance condition. By means of the asymptotic analysis approach given by L. Arnold and the expression of the eigenvalue spectrum of Fokker-Planck operator, the asymptotic expansions of invariant measure and maximal Lyapunov exponent for the relevant system are obtained. Foundation item: the National Natural Science Foundation of China (19602016)  相似文献   

5.
The moment Lyapunov exponents and the Lyapunov exponent of a two-dimensional system under bounded noise excitation are studied in this paper. The method regular perturbation is applied to obtain the small noise expansion of the pth moment Lyapunov exponent and the Lyapunov exponent. The results are applied to the study of the almost-sure and moment stability of the stationary solutions of the elastic beam subjected to the stochastic axial load. The boundaries of the almost-sure and moment stability of the elastic beam as the function of the damping coefficient and characteristics of the stochastic force are obtained.  相似文献   

6.
In this paper, the primary resonance of Duffing oscillator with two kinds of fractional-order derivatives is investigated analytically. Based on the averaging method, the approximately analytical solution and the amplitude–frequency equation are obtained. The effects of the two kinds of fractional-order derivatives on the system dynamics are analyzed, and it is found that these two kinds of fractional-order derivatives could affect not only the linear viscous damping, but also the linear stiffness, which could be characterized by the equivalent damping coefficient and the equivalent stiffness coefficient. The different effects are analyzed based on these two deduced equivalent parameters, when the two fractional orders are limited in the typical intervals, i.e. p1∈[0 1] and p2∈[1 2]. Moreover, the comparisons of the amplitude–frequency curves obtained by the approximately analytical solution and the numerical integration are fulfilled, and the results certify the correctness and satisfactory precision of the approximately analytical solution. Especially, the effects of the parameters in the second kind of fractional-order derivative are studied when the coefficient of the first kind of fractional-order derivative is zero or not. At last, two special cases for the coefficient of the second kind of fractional-order derivative are analyzed, which could make engineers obtain satisfactory vibration control performance and keep the frequency characteristic almost unchanged. These results are very useful in vibration control engineering.  相似文献   

7.
ThedecisiveeffectsofsingularpointsandboundariesbelongingtosolutionprocessesofItostochasticdifferentialequationsonthesituationsofdistributionsofergodiccomponents,theexistenceandtheformsofinvariablemeasures,thesampleproperties(includingsamplestability)…  相似文献   

8.
This Note is concerned with the severely ill-posed Cauchy–Stokes problem. This inverse problem is rephrased into an optimization one: An energy-like error functional is introduced. We prove that the optimality condition of the first order is equivalent to solving an interfacial equation which turns out to be a Cauchy–Steklov–Poincaré operator. Numerical trials highlight the efficiency of the present method. To cite this article: A. Ben Abda et al., C. R. Mecanique 337 (2009).  相似文献   

9.
The multiple timescales method is applied to the exact partial differential equations of the planar motion of a hinged–simply supported beam with a linear axial spring of arbitrary stiffness. The forced-damped and free oscillations of the system around frequencies corresponding to nth natural bending mode are examined thoroughly and compared with numerical simulations as well as with already published results obtained by Lindstedt–Poincaré method. A special numerical technique using explicit finite element method to draw the frequency–response curves is appositely developed. The well-known jump phenomena between resonant and non-resonant branches, as well as superharmonic resonances, have been detected numerically.  相似文献   

10.
Germano (Theor Comput Fluid Dyn 17:225–331, 2004) proposed a hybrid-filter approach, which additively combines an LES-like filter operator (F) and a RANS-like statistical operator (E) using a blending function k: H?=?kF?+?(1???k)E. Using turbulent channel flow as an example, we first conducted a priori tests in order to gain some insights into this hybrid-filter approach, and then performed full simulations to further assess the approach in actual simulations. For a priori tests, two separate simulations, RANS (E) and LES (F), were performed using the same grid in order to construct a hybrid-filtered field (H). It was shown that the extra terms arising out of the hybrid-filtered Navier–Stokes (HFNS) equations provided additional energy transfer from the RANS region to the LES region, thus alleviating the need for the ad hoc forcing term that has been used by some investigators. The complexity of the governing equations necessitated several modifications in order to render it suitable for a full numerical simulation. Despite some issues associated with the numerical implementation, good results were obtained for the mean velocity and skin friction coefficient. The mean velocity profile did not have an overshoot in the logarithmic region for most blending functions, confirming that proper energy transfer from the RANS to the LES region was a key to successful hybrid models. It is shown that Germano’s hybrid-filter approach is a viable and mathematically more appealing approach to simulate high Reynolds number turbulent flows.  相似文献   

11.
The moment Lyapunov exponents and Lyapunov exponent of a two-dimensional system under stochastic parametric excitation are studied. A perturbation approach is used to obtain explicit expressions for these exponents in the presence of small intensity noises. Approximate analytical results for the pth moment Lyapunov exponents are compared with the numerical values obtained by the Monte Carlo simulation approach. The results are applied to the study of the almost-sure and the moment stability of the stationary solutions of the elastic beam subjected to the stochastic axial load. The boundaries of the almost-sure and the moment stability of the elastic beam as the function of the damping coefficient, spectral density of the stochastic force and mode number are obtained.  相似文献   

12.
This paper investigates robust filter design for linear discrete-time impulsive systems with uncertainty under H∞ performance. First, an impulsive linear filter and a robust H∞ filtering problem are introduced for a discrete-time impulsive systems. Then, a sufficient condition of asymptotical stability and H∞ performance for the filtering error systems are provided by the discrete-time Lyapunov function method. The filter gains can be obtained by solving a set of linear matrix inequalities (LMIs). Finally, a numerical example is presented to show effectiveness of the obtained result.  相似文献   

13.
For a real noise parametrically excited co-dimension two bifurcation system on three-dimensional central manifold, a model of enhanced generality is developed in the present paper by assuming the real noise to be an output of a linear filter system, namely, a zero-mean stationary Gaussian diffusion process that satisfies the detailed balance condition. On such basis, asymptotic expansions of invariant measure and maximal Lyapunov exponent for the relevant system are established by use of Arnold asymptotic analysis approach in parallel with the eigenvalue spectrum of Fokker-Planck operator. Foundation item: the National Natural Science Foundation of China (19602016)  相似文献   

14.
The nearly analytic integration discrete (NAID) method for solving the two-dimensional acoustic wave equation has been fully mathematically revised, analyzed and tested. The NAID method is an alternative numerical modeling method for generating synthetic seismograms. The acoustic wave equation is first transformed into a system of first-order ordinary differential equations (ODEs) with respect to time variable t, and then directly integrated at a small time interval of [tn, tn+1] to obtain semi-discrete ordinary differential equations. The integral kernel is expanded into a truncated Taylor series, to which the integration operator is explicitly applied. The high-order temporal derivatives involved in the integral kernel are replaced by high-order spatial derivatives, which then are approximately calculated as a weighted linear combination of the displacement, the particle-velocity, and their spatial gradients. In this article, we investigate the theoretical properties of the revised NAID method, including the discrete error and the stability criteria. Numerical results for constant and layered velocity models show that, comparing to the Lax–Wendroff correction (LWC) scheme and the staggered-grid finite difference method, the NAID method can effectively suppress the numerical dispersion and source-noises caused by the discretization of the acoustic wave equation with too-coarse spatial grids or when models have strong velocity contrasts between adjacent layers. The proposed NAID method has been applied in computing the acoustic wavefields for two heterogeneous models – the corner edge model and the Marmousi model. Promising numerical results illustrate that the NAID method provides an encouraging tool for large-scale and complex wave simulation and inversion problems based on the acoustic equation.  相似文献   

15.
A system of PVDs combined with other preloading methods such as vacuum preloading and surcharge preloading is an effective and economical method which is widely used in the ground treatment. The consolidation theories for drain wells under equal strain condition are often used in the design of ground treatment by PVDs. A radius related strain distribution is proposed to get analytical solutions for the excess pore water pressure and settlement. A linear distributed vacuum pressure along the drain depth and the smear zone as well as well resistance are considered. The numerical results for vacuum loading process are obtained by developed FEM model to compare with the analytical solutions. The results indicate that the influence of the equal strain hypothesis cannot be neglected when n is larger than 10, where n denotes the ratio of diameter of the model to diameter of the drain. The analytical solutions proposed in this paper are more consistent with the numerical results than the analytical results obtained employing the equal strain condition.  相似文献   

16.
Relative to the full compressible flow equations, sound-proof models filter acoustic waves while maintaining advection and internal waves. Two well-known sound-proof models, an anelastic model by Bannon and Durran’s pseudo-incompressible model, are shown here to be structurally very close to the full compressible flow equations. Essentially, the anelastic model is obtained by suppressing ? t ρ in the mass continuity equation and slightly modifying the gravity term, whereas the pseudo-incompressible model results from dropping ? t p from the pressure equation. For length scales small compared to the density and pressure scale heights, the anelastic model reduces to the Boussinesq approximation, while the pseudo-incompressible model approaches the zero Mach number, variable density flow equations. Thus, for small scales, both models are asymptotically consistent with the full compressible flow equations, yet the pseudo-incompressible model is more general in that it remains valid in the presence of large density variations. For the relatively small density variations found in typical atmosphere–ocean flows, both models are found to yield very similar results, with deviations between models much smaller than deviations obtained when using different numerical schemes for the same model. This in agreement with Smolarkiewicz and Dörnbrack (Int J Numer Meth Fluids 56:1513–1519, 2007). Despite these useful properties, neither model can be derived by a low-Mach number asymptotic expansion for length scales comparable to the pressure scale height, i.e., for the regime they were originally designed for. Derivations of these models via scale analysis ignore an asymptotic time scale separation between advection and internal waves. In fact, only the classical Ogura and Phillips model, which assumes weak stratification of the order of the Mach number squared, can be obtained as a leading-order model from systematic low Mach number asymptotic analysis. Issues of formal asymptotics notwithstanding, the close structural similarity of the anelastic and pseudo-incompressible models to the full compressible flow equations makes them useful limit systems in building computational models for atmospheric flows. In the second part of the paper, we propose a second-order finite-volume projection method for the anelastic and pseudo-incompressible models that observes these structural similarities. The method is applied to test problems involving free convection in a neutral atmosphere, the breaking of orographic waves at high altitudes, and the descent of a cold air bubble in the small-scale limit. The scheme is meant to serve as a starting point for the development of a robust compressible atmospheric flow solver in future work.  相似文献   

17.
An original method for modeling, simulation and identification of fractional systems in the time domain is presented in this article. The basic idea is to model the fractional system by a state-space representation, where conventional integration is replaced by a fractional one with the help of a non-integer integrator. This operator is itself approximated by a N-dimensional system composed of an integrator and of a phase-lead filter. An output-error technique is used in order to estimate the parameters of the model, including the fractional order N. Simulations exhibit the properties of the identification algorithm. Finally, this methodology is applied to the modeling of the dynamics of a real heat transfer system.  相似文献   

18.
The mixed covolume method for the regularized long wave equation is developed and studied. By introducing a transfer operator γh , which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.  相似文献   

19.
This paper concerned with the relation of the bending moment to the bending curvature during bending of carbon nanotubes, and the relation between the rippling formation and the bending modulus. Based on the three-dimensional orthotropic theory of finite elasticity deformation, a non-linear bending moment–curvature relationship of carbon nanotubes which is the appearance of wavelike distortion on the inner arc of the bent nanotubes is simulated by using an advanced finite element analysis package, ABAQUS. Utilizing the non-linear bending moment–curvature relationship, the effective bending modulus of carbon nanotubes with different cross-sections are obtained by means of a bi-linear theory and a simplified vibration analysis method. The effective bending modulus of carbon nanotubes simulated in the paper is close to the measuring result presented in reference [Science 283 (1999) 1513].  相似文献   

20.
The dynamic stability of a tapered viscoelastic wing subjected to unsteady aerodynamic forces is investigated. The wing is considered as a cantilever tapered Euler–Bernoulli beam. The beam is made of a linear viscoelastic material where Kelvin–Voigt model is assumed to represent the viscoelastic behavior of the material. The governing equations of motion are derived through the extended Hamilton’s principle. The resulting partial differential equations are solved via Galerkin’s method along with the classical flutter investigation approach. The developed model is validated against the well-known Goland wing and HALE wing and good agreement is obtained. Different solution methods, namely; the k method, the p-k method, and the flutter determinant method are compared for the case of elastic wing. However, when the viscoelastic damping is introduced, the k and p-k methods become less effective. The flutter determinant method is modified and employed to carry out non-dimensional parametric study on the Goland wing. The study includes the effects of parameters such as the taper ratio, the density ratio, the viscoelastic damping of wing structure and many other parameters on the flutter speed and flutter frequency. The study reveals that a tapered wing would be more dynamically stable than a uniform wing. It is also observed that the viscoelastic damping provides wider stability region for the wing. The investigation shows that the density ratio, bending-to-torsion frequency ratio, and the radius of gyration have significant effects on the dynamic stability of the wing. Based on the obtained results, a wing with an elastic center and inertial center that are located closer to the mid-chord would be more dynamically stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号