首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the robust stochastic stability and H∞ analysis for stochastic systems with time-varying delay and Markovian jump. By using the freeweighting matrix technique, i.e., He's technique, and a stochastic Lyapunov-Krasovskii functional, new delay-dependent criteria in terms of linear matrix inequalities are derived for the the robust stochastic stability and the H∞ disturbance attenuation. Three numerical examples are given. The results show that the proposed method is efficient and much less conservative than the existing results in the literature.  相似文献   

2.
Uncertainty is inherent and unavoidable in almost all engineering systems. It is of essential significance to deal with uncertainties by means of reliability approach and to achieve a reasonable balance between reliability against uncertainties and system performance in the control design of uncertain systems. Nevertheless, reliability methods which can be used directly for analysis and synthesis of active control of structures in the presence of uncertainties remain to be developed, especially in non-probabilistic uncertainty situations. In the present paper, the issue of vibration con- trol of uncertain structures using linear quadratic regulator (LQR) approach is studied from the viewpoint of reliabil- ity. An efficient non-probabilistic robust reliability method for LQR-based static output feedback robust control of un- certain structures is presented by treating bounded uncertain parameters as interval variables. The optimal vibration con- troller design for uncertain structures is carried out by solv- ing a robust reliability-based optimization problem with the objective to minimize the quadratic performance index. The controller obtained may possess optimum performance un- der the condition that the controlled structure is robustly re- liable with respect to admissible uncertainties. The proposed method provides an essential basis for achieving a balance between robustness and performance in controller design ot uncertain structures. The presented formulations are in the framework of linear matrix inequality and can be carried out conveniently. Two numerical examples are provided to illustrate the effectiveness and feasibility of the present method.  相似文献   

3.
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.  相似文献   

4.
Active vibration control for a kind of two-hinged plate is developed in this paper. A finite element model for the hinged plate integrated with distributed piezoelectric sensors and actuators is derived, including bending and torsional modes of vibration. In this model, the hinges are simplified as regular plate elements to facilitate operation. The state space representations for bending and torsional vibrations are obtained. Based on two low-order models of the bending and torsional motion, two H ∞ robust controllers are designed for suppressing the vibrations of the bending and torsional modes, respectively. The simulation results indicate the effectiveness and feasibility of the designed H ∞ controllers. The vibration magnitudes of the low-order modes can be reduced without affecting the high frequency modes.  相似文献   

5.
Different from the inverse problem put forward by R.E.Kalman, another kind ofinverse problem of linear optimal control is proposed and discussed in[1] as follows:Givenan asymptotically stable linear constant system and a nonnegative quadratic performanceindex, when can a state-feedback be separated from the stable system so that this state-feedback control law is optimal for the given index? In this paper this problem is extended.Similar conclusions are obtained for linear discrete systems and linear time-variablesystems. According to these conclusions we can say that the correspondence between theasymptotically stable system and the optimal feedback system is the inherent character ofall kinds of linear systems.  相似文献   

6.
Blended skip entry guidance for low-lifting lunar return vehicles   总被引:1,自引:0,他引:1  
A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewise bank-vs-energy magnitude profile and a sign profile are adopted in the skip phase.A magnitude parameter is used to adjust the predicted downrange,and a pseudo-crossrange at the beginning of the final phase is selected as the lateral control variable.Prediction biases of both channels are nullified by a false position iteration algorithm.An on-line estimation and modeling method is introduced to compensate for aerodynamic and atmospheric uncertainties.A nominal trajectory for the final phase is generated based on actual reenter conditions,and the obtained nominal trajectory is tracked by a linear feedback law.A lateral corridor is used to manage the lateral state.The proposed guidance algorithm is assessed using three-degree-of-freedom Monte Carlo analyses,and the results show a satisfactory and robust performance under highly stressful dispersions.  相似文献   

7.
As to an autonomous nonlinear system, the stability of the equilibrium state in a sufficiently small neighborhood of the equilibrium state can be determined by eigenvalues of the linear part of the nonlinear system provided that the eigenvalues are not in a critical case. Many methods may be used to detect the stability for a linear system. A lot of researches for determining the stability of a nonlinear system are completed by mathematicians and mechanicians but most of them are methods for the special forms of nonlinear systems. Till now, none of these methods can be conveniently applied to all nonlinear systems. The method introduced by this paper gives the necessary and sufficient conditions of the stability of a nonlinear system. The familiar Krasovski's method is a special case of this method  相似文献   

8.
A parametric variational principle and the corresponding numerical algo- rithm are proposed to solve a linear-quadratic (LQ) optimal control problem with control inequality constraints. Based on the parametric variational principle, this control prob- lem is transformed into a set of Hamiltonian canonical equations coupled with the linear complementarity equations, which are solved by a linear complementarity solver in the discrete-time domain. The costate variable information is also evaluated by the proposed method. The parametric variational algorithm proposed in this paper is suitable for both time-invariant and time-varying systems. Two numerical examples are used to test the validity of the proposed method. The proposed algorithm is used to astrodynamics to solve a practical optimal control problem for rendezvousing spacecrafts with a finite low thrust. The numerical simulations show that the parametric variational algorithm is ef- fective for LQ optimal control problems with control inequality constraints.  相似文献   

9.
The geometrk, properties of the solution set of Lyapunov equation of linear time invariant discrete system are discussed. Furthermore, the stabitility of piecewise linear discrete systems is studied and some sufficient conditions are obtained for the asymptotical stability of piecewise linear discrete systems in which each sub-system is stable. The results are applied to second order piecewise linear systems.  相似文献   

10.
An optimal time-delay feedback control method is provided to mitigate the primary resonance of a single-walled carbon nanotube (SWCNT) subjected to a Lorentz force excited by a longitudinal magnetic field. The nonlinear governing equations of motion for the SWCNT under longitudinal magnetic field are derived and the modulation equations are obtained by using the method of multiple scales. The regions of the stable feedback gain are worked out by using the stability conditions of eigenvalue equation. Taking the attenuation ratio as the objective function and the stable vibration regions as constrained conditions, the optimal control parameters are worked out by using minimum optimal method. The optimal controllers are designed to control the dynamic behaviors of tile nonlinear vibration systems. It is found that the optimal feedback gain obtained by the optimal method can enhance the control performance of the primary resonance of SWCNT devices.  相似文献   

11.
A robust SEIR epidemic disease model with a profitless delay and verti- cal transmission is formulated,and the dynamics behaviors of the model under pulse vaccination are analyzed.By use of the discrete dynamical system determined by the stroboscopic map,an‘infection-free’periodic solution is obtained,further,it is shown that the‘infection-free’periodic solution is globally attractive when some parameters of the model are under appropriate conditions.Using the theory on delay functional and impulsive differential equatibn,the sufficient condition with time delay for the perma- nence of the system is obtained,and it is proved that time delays,pulse vaccination and vertical transmission can bring obvious effects on the dynamics behaviors of the model. The results indicate that the delay is‘profitless’.  相似文献   

12.
The p-moment exponential robust stability for stochastic systems with distributed delays and interval parameters is studied. By constructing the Lyapunov- Krasovskii functional and employing the decomposition technique of interval matrix and Ito's formula, the delay-dependent criteria for the p-moment exponential robust stability are obtained. Numerical examples show the validity and practicality of the presented criteria.  相似文献   

13.
In this paper, we investigate the stability of a class of impulsive functional differential equations by using Lyapunov functional and Jensen's inequality. Some new stability theorems are obtained. Examples are given to demonstrate the advantage of the obtained results.  相似文献   

14.
A highly efficient H1-Galerkin mixed finite element method(MFEM) is presented with linear triangular element for the parabolic integro-differential equation.Firstly, some new results about the integral estimation and asymptotic expansions are studied. Then, the superconvergence of order O(h2) for both the original variable u in H1(π) norm and the flux p =u in H(div,π) norm is derived through the interpolation post processing technique. Furthermore, with the help of the asymptotic expansions and a suitable auxiliary problem, the extrapolation solutions with accuracy O(h3) are obtained for the above two variables. Finally, some numerical results are provided to confirm validity of the theoretical analysis and excellent performance of the proposed method.  相似文献   

15.
When using H∞ techniques to design decentralized controllers for large systems,the whole system is divided into subsystems, which are analysed using H∞ control theorybefore being recombined. An analogy was established with substructural analysis instructural mechanics, in which H∞ decentralized control theory corresponds to substructuralmodal synthesis theory so that the optimal H∞ norm of the whole system corresponds to thefundamental vibration frequency of the whole structure. Hence, modal synthesismethodology and the extended Wittrick-Williams algorithm were transplanted from structuralmechanics to compute the optimal H∞ norm of the control system. The orthogonality and theexpansion theorem of eigenfunctions of the subsystems H∞ control are presented in part(I) of the paper. The modal synthesis method for computation of the optimal H∞ norm ofdecentralized control systems and numerical examples are presented in part (Ⅱ).  相似文献   

16.
We investigate a stage-structured delayed predator-prey model with impulsive stocking on prey and continuous harvesting on predator. According to the fact of biological resource management, we improve the assumption of a predator-prey model with stage structure for predator population that each individual predator has the same ability to capture prey. It is assumed that the immature and mature individuals of the predator population are divided by a fixed age, and immature predator population does not have the ability to attach prey. Sufficient conditions are obtained, which guarantee the global attractivity of predator-extinction periodic solution and the permanence of the system. Our results show that the behavior of impulsive stocking on prey plays an important role for the permanence of the system, and provide tactical basis for the biological resource management. Numerical analysis is presented to illuminate the dynamics of the system.  相似文献   

17.
In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geomet-ric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from“discrete”to“continuous”and back to“discrete”. The buck-ling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algo-rithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.  相似文献   

18.
Feedback control problems for linear periodic systems (LPSs) with interval- type parameter uncertainties are studied in the discrete-time domain. First, the stability analysis and stabilization problems are addressed. Conditions based on the linear matrices inequality (LMI) for the asymptotical stability and state feedback stabilization, respec-tively, are given. Problems of L2-gain analysis and control synthesis are studied. For the L2-gain analysis problem, we obtain an LMI-based condition such that the autonomous uncertain LPS is asymptotically stable and has an L2-gain smaller than a positive scalar γ. For the control synthesis problem, we derive an LMI-based condition to build a state feedback controller ensuring that the closed-loop system is asymptotically stable and has an L2-gain smaller than the positive scalar γ. All the conditions are necessary and sufficient.  相似文献   

19.
When using H∞ techniques to design decentralized controllers for large systems, the whole system is divided into subsystems, which are analysed using H∞ control theorybefore being recombined. An analogy was established with substructural analysis instructural mechanics, in which H∞ decentralized control theory corresponds to substructuralmodal synthesis theory so that the optimal H∞ norm of the whole system corresponds to thefundamental vibration frequency of the whole structure. Hence, modal synthesismethodology and the extended Wittrick-Williams algorithm were transplanted from structuralmechanics to compute the optimal H∞ norm of the control system. The orthogonality and theexpansion theorem of eigenfunctions of the subsystems H~ control are presented in part (I)of the paper. The modal synthesis method for computation of the optimal H∞ norm ofdecentralized control systems and numerical examples are presented in part (Ⅱ).  相似文献   

20.
The discrete element method (DEM) has attractive features for problems with severe damages, but lack of theoretical basis for continua behavior especially for nonlinear behavior has seriously restricted its application. The present study proposes a new approach to developing the DEM as a general and robust technique for modeling the elastoplastic behavior of solid materials. New types of connective links between elements are proposed, the interelement parameters are theoretically determined based on the principle of energy equivalence and a yield criterion and a flow rule for DEM are given for describing nonlinear behavior of materials. Moreover, a numerical scheme, which can be applied to modeling the behavior of a continuum as well as the transformation from a continuum to a discontinuum, is obtained by introducing a fracture criterion and a contact model into the DEM. The elastoplastic stress wave propagations and the tensile failure process of a steel plate are simulated, and the numerical results agree well with those obtained from the finite element method (FEM) and corresponding experiment, and thus the accuracy and efficiency of the DEM scheme are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号