首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
确定大跨径悬索桥主缆成桥线形的虚拟梁法   总被引:12,自引:1,他引:11  
精确计算悬索桥主缆索形是悬索桥设计和实现施工开环控制的关键。本文通过柔计算的虚拟梁法,导出了确定大跨径悬索桥主缆成桥线形的非线性方程组,建立了索型迭代的计算流程。  相似文献   

2.
提出随机优化、零阶优化和一阶优化相结合的综合非线性优化方法,并通过对ANSYS程序的二次开发编制全面优化设计和非线性有限元分析的综合辅助程序,从而对倒张型悬索桥进行非线性优化设计,以更合理地确定倒张型悬索桥设计中的关键因素,最终使倒张型悬索桥的受力和变形达到均匀合理的状态,以利于实际工程设计和应用.从优化设计前后的对比可以看出,本文的综合非线性优化方法和综合辅助程序简单有效,优化的效果显著.  相似文献   

3.
悬索桥的非线性分析   总被引:4,自引:1,他引:4  
洪锦如 《力学季刊》1995,16(4):323-331
为进行悬索桥的几何非线性分析,建立了梁单元的刚度矩阵及有关算法,通过算例验证了方法是可行的。  相似文献   

4.
随着悬索桥跨径的增大,缆索直径以及作用在其上的风荷载、风与结构相互作用的非线性效应以及风速空间分布的非均匀性都将显著增强。以润扬长江大桥为背景,进行了缆索风荷载、风与结构相互作用的非线性效应以及风速空间非均匀分布等因素对大跨径悬索桥空气静力和动力特性影响的数值分析。分析结果表明:这些因素对大跨径悬索桥空气静力特性的影响比较大;但是对于空气动力稳定性而言,风与结构相互作用的非线性效应的影响比较显著,而其它两个因素则基本没有影响。  相似文献   

5.
为指导双缆悬索桥上下缆垂跨比的取值,明确双缆悬索桥施工阶段主缆抗滑稳定性,提出一种主缆在施工阶段空缆状态下的抗滑安全系数计算方法。基于上缆变下缆的主缆布置方式,通过双缆悬索桥成桥状态反推空缆状态主缆垂度,根据空缆状态下主缆线形为悬链线计算中塔塔顶鞍座处缆力及包角,并据此计算空缆状态抗滑安全系数。建立多塔悬索桥有限元模型对提出的公式进行验证,分析成桥状态上下缆垂跨比和桥梁跨度的取值对空缆到成桥状态主缆垂度变化以及抗滑安全系数的影响。结果表明,采用本文公式计算的双缆悬索桥空缆状态下抗滑安全系数精度较高;上下缆垂跨比对空缆状态主缆抗滑安全性影响较大,抗滑安全系数随着上下缆垂跨比差值的增大迅速减小;空缆状态主缆抗滑安全系数受跨度影响不大,其随跨度增大略有提高。在实际的双缆悬索桥初步设计过程中应考虑施工阶段主缆抗滑稳定性,选择适宜的上下缆垂跨比,采取措施提高施工阶段主缆抗滑安全性。  相似文献   

6.
斜拉索各参数取值对索力测定结果的影响   总被引:3,自引:1,他引:3  
为了确保频率法测定斜拉索索力的精度,以某斜拉桥中的拉索为例,采用平面非线性有限元法探讨了斜拉索各参数取值对索力值的影响,并讨论了各参数的合理取值.利用分析结果找到了不同的测试单位在该斜拉桥的索力联测中存在较大索力偏差的原因,可对施工过程中的索力精确测定提供帮助.分析结果同样适用于悬索桥和悬挂屋顶等索结构的索力测定.  相似文献   

7.
确定悬索桥主缆成桥线形的参数方程法   总被引:2,自引:0,他引:2  
假设悬索桥主缆自重沿弧长均匀分布,加劲梁、桥面等其余恒载沿水平均匀分布,导出了悬索桥主缆成桥线形的参数方程解。然后由边界条件及连续性条件,建立了确定主缆成桥线形的非线性方程组。根据中跨方程组可求出成桥状态主缆张力水平分量和中跨端点处对应的参数,再由中跨与边跨主缆张力水平分量相等的假定,根据边跨方程组来确定边跨端点处的参数。这样,主缆吊点坐标计算最终被转换成求解一个非线性方程。本文采用拟牛顿法求解非线性方程组,采用对分法求解非线性方程,算例结果表明本文方法具有适合程序计算、收敛速度快、计算精度较高的特点。  相似文献   

8.
大跨度桥梁的动力特性是研究桥梁振动的基础,随着跨度的增加,桥梁更加轻型化和柔性化,其几何变形与内力状态地随着风速的改变而变化,从而影响到结构的动力特性,本文介绍了风速变化时大跨径悬索桥动力特性的计算方法,并以广东虎门大桥为例,分析了大跨度悬索桥动力特性随风速度化的规律。  相似文献   

9.
本文在连续膜假设条件下,建立了新的能描述吊索变形和松弛影响的悬索桥横向振动非线性偏微分方程组.该方程组的不等式定解条件反映出吊索松弛与否情况.在假设吊索不松弛的条件下,对上述方程组进行简化后得到一组只含双侧约束的非线性偏微分方程组.此方程组的定解条件是用等式表示的双侧约束条件.通过Galerkin方法把双侧约束的偏微分方程组离散为时域上非线性常微分方程组.用多尺度法求得了非线性常微分方程组非共振情况下的一次近似解析解.通过比较数值解和解析解发现,解析解有良好的精度.同时数值和解析的结果指出,在非共振情况下悬索桥的加劲梁和主缆的振幅都是有限值并正比于激励的幅值.  相似文献   

10.
大跨度人行悬索桥柔度大且阻尼小,易在人群荷载激励下产生过大振动,导致舒适度不满足规范要求.对于此类结构,需要采取有效减振措施控制其动力响应.本文介绍了多重调谐质量阻尼器(MTMD)对主跨600 m人行悬索桥的人致振动控制性能.利用有限元软件建立了某大跨度人行悬索桥模型,以德国EN03规范为计算依据,计算了悬索桥的人致振...  相似文献   

11.
针对现有的桥梁静风稳定分析方法中存在的问题,提出了增量与内外两重迭代相结合的新方法,并且考虑了结构几何、材料和静风荷载非线性。在上述方法的基础上,编制了桥梁非线性空气静力稳定分析程序BNAP,并进行了相应的算例分析,所得结果表明该方法具有计算稳定和速度快的优点。最后,以一座主跨1000米的斜拉桥为例,分析了结构几何非线性、材料非线性和静风荷载非线性对大跨径桥梁空气静力稳定性的影响。  相似文献   

12.
Nonlinear behavior of composite sandwich beams in three-point bending   总被引:1,自引:0,他引:1  
The load-deflection behavior of a composite sandwich beam in three-point bending was investigated. The beam was made of unidirectional carbon/epoxy facings and a polyvinyl chloride closed-cell foam core. The load-deflection curves were plotted up to the point of failure initiation. They consist of an initial linear part followed by a nonlinear portion. A nonlinear mechanics of materials analysis that accounts for the combined effect of the nonlinear behavior of the facings and core materials (material nonlinearity) and the large deflections of the beam (geometric nonlinearity) was developed. The theoretical predictions were in good agreement with the experimental results. It was found that the effect of material nonlinearity on the deflection of the beam is more pronounced for shear-dominated core failures in the case of short span lengths. It is due to the nonlinear shear stress-strain behavior of the core. For long span lengths, the observed nonlinearity is small and is attributed to the combined effect of the facings nonlinear stress-strain behavior and the large deflections of the beam.  相似文献   

13.
当悬索桥主跨跨径超过2 000 m后, 气动稳定性已经成为悬索桥面临的最重要的安全问题,选择合适的装置避免桥梁在施工及运营阶段发生颤振势在必行.综述了国内外大跨度悬索桥颤振控制方法、措施及发展现状,系统介绍了大跨度悬索桥颤振控制的结构措施、耗能措施及气动措施的装置与应用,并讨论了各种措施的优缺点及其适用性.   相似文献   

14.
The creep buckling and post-buckling of the laminated piezoelectric viscoelastic functionally graded material (FGM) plates are studied in this research. Considering the transverse shear deformation and geometric nonlinearity, the Von Karman geometric relation of the laminated piezoelectric viscoelastic FGM plates with initial deflection is established. And then nonlinear creep governing equations of the laminated piezoelectric viscoelastic FGM plates subjected to an in-plane compressive load are derived on the basis of the elastic piezoelectric theory and Boltzmann superposition principle. Applying the finite difference method and the Newmark scheme, the whole problem is solved by the iterative method. In numerical examples, the effects of geometric nonlinearity, transverse shear deformation, the applied electric load, the volume fraction and the geometric parameters on the creep buckling and post-buckling of laminated piezoelectric viscoelastic FGM plates with initial deflection are investigated.  相似文献   

15.
In this paper a boundary element formulation for analysis of shear deformable plates with combined geometric and material nonlinearities by boundary element method is presented. The dual reciprocity method is used in dealing with the geometric nonlinearity and domain discretization is implemented in dealing with material nonlinearity. The material is assumed to undergo large deflection with small strains. The von Mises criteria is used to evaluate the plastic zone and an elastic perfectly plastic material behaviour is assumed. An initial stress formulation is used to formulate the boundary integral equations. A total incremental method is applied to solve the nonlinear boundary integral equations. Numerical examples are presented to demonstrate the validity and the accuracy of the proposed method.  相似文献   

16.
An efficient and robust fluid–structure coupled methodology has been developed to investigate the linear and non-linear static aeroelastic behavior of flexible high-aspect-ratio wing. A three-dimensional open source finite element solver has been loosely coupled with an in-house Reynolds-averaged Navier–Stokes solver, designed for hybrid-unstructured meshes, to perform aero-structural coupled simulations. For volume mesh deformation and two-way data interpolation over non-matching grids interface, a radial basis function methodology combined with a data reduction algorithm has been used. This technique is efficient in handling large deflections and provides high-quality deformed meshes. Structural geometric nonlinearity has been considered to predict the deformations in the vertical and torsional directions caused by gravitational and aerodynamic loading. A multi-material finite element model has been generated to match the experimental configuration. Computational aeroelastic simulations were performed on an experimental high-aspect-ratio aeroelastic wing model with a slender body at the tip to get non-linear static deflections, twist and structure natural frequencies. The effect of the geometric nonlinearity is significant for large deformation analysis and has been highlighted in the predicted maximum tip deflection and twist. Good qualitative and quantitative agreement has been achieved between the predicted results and the available experimental data.  相似文献   

17.
Geometric and material nonlinear analysis of tensegrity structures   总被引:3,自引:1,他引:2  
A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.  相似文献   

18.
A fully nonlinear model of suspension bridges parameterized by one single space coordinate is proposed to describe overall three-dimensional motions. The nonlinear equations of motion are obtained via a direct total Lagrangian formulation and the kinematics, for the deck-girder and the suspension cables, feature the finite displacements of the associated base lines and the flexural and torsional rotations of the deck cross-sections assumed rigid in their own planes. The strain-displacement relationships for the generalized strain parameters, the elongations in the cables, the deck elongation, and the three curvatures, retain the full geometric nonlinearities. The proposed nonlinear model with its full extensional-flexural-torsional coupling is employed to study the torsional divergence caused by the static part of the wind-induced forces. Two suspension bridges are considered as case studies: the Runyang bridge (main span 1,490?m) and the Hu Men bridge (main span 888?m) in China. The evaluation of the onset of the static instability and the post-critical behavior takes into account the prestressed condition of the bridge subject to dead loads. The dynamic bifurcation that occurs at the onset of flutter is also studied accounting for the prestressed equilibrium state about which the equations of motion are obtained via an updated Lagrangian formulation. Such a bifurcation is investigated in the context of the parametric nonlinear model considering the model parameters of the Runyang Suspension Bridge together with its aeroelastic derivatives. The calculated critical wind speeds for the onset of the static and dynamic bifurcations are compared with the results obtained via linear analysis and the main differences are highlighted. Parametric sensitivity studies are carried out to assess the influence of the design parameters on the instabilities associated with the bridge aeroelastic response.  相似文献   

19.
A microstructure-dependent nonlinear Euler-Bernoulli and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material are developed using the principle of virtual displacements. The formulation is based on a modified couple stress theory, power-law variation of the material, and the von Kármán geometric nonlinearity. The model contains a material length scale parameter that can capture the size effect in a functionally graded material, unlike the classical Euler-Bernoulli and Timoshenko beam theories. The influence of the parameter on static bending, vibration and buckling is investigated. The theoretical developments presented herein also serve to develop finite element models and determine the effect of the geometric nonlinearity and microstructure-dependent constitutive relations on post-buckling response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号