首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The problem of a piezoelectric ellipsoidal inclusion in an infinite nonpiezoelectric matrix is very important in engineering. In this paper, it is solved via Green's function technique. The closed-form solutions of the electroelastic Eshelby's tensors for this kind of problem are obtained. The electroelastic Eshelby's tensors can be expressed by the Eshelby's tensors of the perfectly elastic inclusion problem and the perfectly dielectric inclusion problem. Since the closed-form solutions of the Eshelby's tensors of the perfectly elastic inclusion problem and the perfectly dielectric inclusion problem can be given by theory of elasticity and electrodynamics, respectively, the electroelastic Eshelby's tensors can be obtained conveniently. Using these results, the closed-form solutions of the constraint elastic fields and the constraint electric fields inside the piezoelectric ellipsoidal inclusion are also obtained. These expressions can be readily utilized in solutions of numerous problems in the micromechanics of piezoelectric solids, such as the deformation and energy analysis, damage evolution and fracture of the piezoelectric materials. The project supported by the National Natural Science Foundation of China  相似文献   

2.
The two-dimensional problem of a thermopiezoelectric material containing an elliptic inclusion or a hole subjected to a remote uniform heat flow is studied. Based on the extended Lekhnitskii formulation for thermopiezoelectricity, conformal mapping and Laurent series expansion, the explicit and closed-form solutions are obtained both inside and outside the inclusion (or hole). For a hole problem, the exact electric boundary conditions on the hole surface are used. The results show that the electroelastic fields inside the inclusion or the electric field inside the hole are linear functions of the coordinates. When the elliptic hole degenerates into a slit crack, the electroelastic fields and the intensity factors are obtained. The effect of the heat flow direction and the dielectric constant of air inside the crack on the thermal electroelastic fields are discussed. Comparison is made with two special cases of which the closed solutions exist and it is shown that our results are valid.  相似文献   

3.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

4.
在线性压电陶瓷本构关系和裂纹边界绝缘的框架下,用超奇异积分方程的方法对椭圆类片状裂纹问题进行了重新研究.超奇异积分方程中的未知位移间断和电势间断近似地表示为基本密度函数与多项式之积,其中基本密度函数反映了椭圆片状裂纹前沿电弹性场的奇异性,而多项式在均布载荷作用下可用一个常数来表达.引入椭球坐标系后,得到了均布载荷作用下未知位移间断和电势间断的解析解.使用这些解析解和电弹性场强度的定义,得到了裂纹前沿Ⅰ型、Ⅱ型和Ⅲ型应力强度因子以及电位移强度因子的精确表达式.法向均布载荷作用下的结果与现有精确解完全一致,切向均布载荷作用下的结果则尚未见有其它报道.  相似文献   

5.
This paper presents a novel efficient procedure to analyze the elliptical inhomogeneity problem in piezoelectric materials under electromechanical loadings. The electromechanical loadings considered in this paper include a point force and a point charge or a far-field anti-plane shear and in-plane electric field. The analytical continuation method together with alternating technique is used to derive the electroelastic fields in terms of the corresponding homogeneous solution. Compared to existing related papers, this approach could lead to some interesting simplifications in solution procedure and the derived analytical solution for singularity problems can be employed as a Green's function to investigate matrix cracking in the inclusion/matrix system. Numerical results are provided to show the effect of the material mismatch, the aspect ratio and the loading condition on the electroelastic field due to the presence of the inhomogeneity.  相似文献   

6.
含刚性线夹杂及裂纹的各向异性压电材料耦合场分析   总被引:8,自引:0,他引:8  
杜善义  梁军  韩杰才 《力学学报》1995,27(5):544-550
采用各向异性弹性力学中Stroh方法对含刚性线夹杂及裂纹的无限大各向异性压电材料耦合的弹性场和电场进行了分析。并得到夹杂和基体界面间耦合场的实型显函表达式及夹杂尖端的1/2阶奇异性。  相似文献   

7.
The anti-plane problem of an elliptical inhomogeneity with an interfacial crack in piezoelectric materials is investigated. The system is subjected to arbitrary singularity loads (point charge and anti-plane concentrated force) and remote anti-plane mechanical and in-plane electrical loads. Using the complex variable method, the explicit series form solutions for the complex potentials in the matrix and the inclusion regions are derived. The electroelastic field intensity factors, the corresponding energy release rates and the generalized strain energy density at the cracks tips are then provided. The influence of the aspect ratio of the ellipse, the crack geometry and the electromechanical coupling coefficient on the energy release rate and the strain energy density is discussed and shown in graphs. The results indicate that the energy release rate increases with increment of the aspect ratio of the ellipse and the influence of electromechanical coupling coefficient on the energy release rate is significant. The strain energy density decreases with increment of the aspect radio of the ellipse and it is always positive for the cases discussed. The energy release rate, however, can be negative when both mechanical and fields are applied.  相似文献   

8.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

9.
The paper is concerned with composite materials which consist of a homogeneous matrix phase with a set of inclusions uniformly distributed in the matrix. The components of these materials are considered to be ideally elastic and exhibit piezoelectric properties. One of the variants of the self-consistent scheme, the Effective Field Method (EFM) is applied to calculate effective dielectric, piezoelectric and thermoelastic properties of such materials, taking into account the coupled electroelastic effects. At first the coupled thermoelectroelastic problem for a homogeneous medium with an isolated inclusion is solved. For an ellipsoidal inclusion and constant external field the solution of this problem is found in a closed analytic form. This solution is then used in the EFM to derive the effective thermoelectroelastic operator for the composite containing a random array of ellipsoidal inclusions. Explicit formulae for the electrothermoelastic constants are given for composites, reinforced by spheroidal inclusions.  相似文献   

10.
IntroductionTheinteractionofdislocationswithinclusionsisofconsiderableimportanceforunderstandingthephysicalbehaviorofmaterials.Suchstudiescanprovidedinformationconcerningcertainstrengtheningorhardeningmechanismsinnumberoftraditionalandcompositemateri…  相似文献   

11.
A generalized solution was obtained for the partially debonded elliptic inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric loading using the complex variable method. It was assumed that the interfacial debonding induced an electrically impermeable crack at the interface. The principle of conformal transformation and analytical continuation were employed to reduce the formulation into two Riemann-Hilbert problems. This enabled the determination of the complex potentials in the inhomogeneity and the matrix by means of series of expressions. The resulting solution was then used to obtain the electroeiastic fields and the energy release rate involving the debonding at the inhomogeneity-matrix interface. The validity and versatility of the current general solution have been demonstrated through some specific examples such as the problems of perfectly bonded elliptic inhomogeneity , totally debonded elliptic inhomogeneity, partially debonded rigid and conducting elliptic inhomogeneity, and partially debonded circular inhomogeneity.  相似文献   

12.
International Applied Mechanics - The problem of electric and stress state in an orthotropic electroelastic space containing an arbitrarily oriented ellipsoidal inclusion under homogeneous force...  相似文献   

13.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

14.
The interaction of an elastic ellipsoidal inclusion with an elliptic crack in an infinite elastic medium under triaxial loading is analyzed. The stress state in the elastic space is represented as a superposition of the principal state and perturbed states, which are due to the presence and interaction of the inclusion and the crack. The analytical solution of the problem is found using the method of equivalent inclusion, the potential of an inhomogeneous ellipsoid, and a system of harmonic functions for an elliptic crack. The effect of triaxial loading on the stress intensity factors is analyzed  相似文献   

15.
In this work, a modeling of electroelastic composite materials is proposed. The extension of the heterogeneous inclusion problem of Eshelby for elastic to electroelastic behavior is formulated in terms of four interaction tensors related to Eshelby’s electroelastic tensors. Analytical formulations of interaction tensors are presented for ellipsoidal inclusions. These tensors are basically used to derive the self-consistent model, Mori–Tanaka and dilute approaches. Numerical solutions are based on numerical computations of these tensors for various types of inclusions. Using the obtained results, effective electroelastic moduli of piezoelectric multiphase composites are investigated by an iterative procedure in the context of self-consistent scheme. Generalised Mori–Tanaka’s model and dilute approach are re-formulated and the three models are deeply analysed. Concentration tensors corresponding to each model are presented and relationships of effective coefficients are given. Numerical results of effective electroelastic moduli are presented for various types of piezoelectric inclusions and for various orientations and compared to existing experimental and theoretical ones.  相似文献   

16.
An analytical framework based on the homogenization method has been developed to predict the effective electromechanical properties of periodic, particulate and porous, piezoelectric composites with anisotropic constituents. Expressions are provided for the effective moduli tensors of n-phase composites based on the respective strain and electric field concentration tensors. By taking into account the shape and distribution of the inclusion and by invoking a simple numerical procedure, solutions for the electromechanical properties of a general anisotropic inclusion in an anisotropic matrix are obtained. While analytical forms are provided for predicting the electroelastic moduli of composites with spherical and cylindrical inclusions, numerical evaluation of integrals over the composite microstructure is required in order to obtain the corresponding expressions for a general ellipsoidal particle in a piezoelectric matrix. The electroelastic moduli of piezoelectric composites predicted by the analytical model developed in the present study demonstrate excellent agreement with results obtained from three-dimensional finite-element models for several piezoelectric systems that exhibit varying degrees of elastic anisotropy.  相似文献   

17.
An approach is considered to how to allow for the interaction between an ellipsoidal heterogeneity (inclusion) and an elliptic crack in an elastic medium. Using the superposition of perturbed stress states, the boundary conditions are satisfied on the ellipsoidal surface by the method of equivalent inclusion and on the crack surface by the least-squares method. A numerical analysis is carried out. Typical mechanical effects are revealed. In the calculations, the stress state near the ellipsoidal heterogeneity is approximated by a polynomial of the second degree in Cartesian coordinates, whereas the load on the crack surface is simulated by a polynomial of the fourth degree in Cartesian coordinates. In particular cases, the results are in good agreement with the data obtained by other authors  相似文献   

18.
The electroelastic coupling interaction between multiple screw dislocations and a circular inclusion with an imperfect interface in a piezoelectric solid is investigated. The appointed screw dislocation may be located either outside or inside the inclusion and is subjected to a line charge and a line force at the core. The analytic solutions of electroelastic fields are obtained by means of the complex-variable method. With the aid of the generalized Peach–Koehler formula, the explicit expressions of image forces exerted on the piezoelectric screw dislocations are derived. The motion and the equilibrium position of the appointed screw dislocation near the circular interface are discussed for variable parameters (interface imperfection, material electroelastic mismatch, and dislocation position), and the influence of the nearby parallel screw dislocations is also considered. It is found that the piezoelectric screw dislocation is always attracted by the electromechanical imperfect interface. When the interface imperfection is strong, the impact of material electroelastic mismatch on the image force and the equilibrium position of the dislocation becomes weak. Additionally, the effect of the nearby dislocations on the mobility of the appointed dislocation is very important.  相似文献   

19.
The paper establishes a relationship between the solutions for cracks located in the isotropy plane of a transversely isotropic piezoceramic medium and opened (without friction) by rigid inclusions and the solutions for cracks in a purely elastic medium. This makes it possible to calculate the stress intensity factor (SIF) for cracks in an electroelastic medium from the SIF for an elastic isotropic material, without the need to solve the electroelastic problem. The use of the approach is exemplified by a penny-shaped crack opened by either a disk-shaped rigid inclusion of constant thickness or a rigid oblate spheroidal inclusion in an electroelastic medium __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 47–60, July 2008.  相似文献   

20.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号