首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
Numerical solutions to the three-dimensional, unsteady, incompressible Reynolds-averaged Navier-Stokes equations have been obtained for bubble-type vortex breakdown. Two different turbulence models were employed: (1) standard K-ε and (2) an explicit, regularized algebraic Reynolds stress model. Results are computed at a Reynolds number of 10,000. The algebraic Reynolds stress model produced a breakdown bubble with a larger length-to-diameter ratio than did the K-ε model. Breakdown also occurred at lower levels of adverse pressure gradient for the algebraic stress model than for the K-ε model. In each case single-cell breakdown structures resulted. This is contrasted with numerical calculations for laminar breakdown which reveal the existence of complex multicell bubble breakdown structures.  相似文献   

3.
For complex turbulent flows, Reynolds stress closure modeling (RSCM) is the lowest level at which models can be developed with some fidelity to the governing Navier–Stokes equations. Citing computational burden, researchers have long sought to reduce the seven-equation RSCM to the so-called algebraic Reynolds stress model which involves solving only two evolution equations for turbulent kinetic energy and dissipation. In the past, reduction has been accomplished successfully in the weak-equilibrium limit of turbulence. In non-equilibrium turbulence, attempts at reduction have lacked mathematical rigor and have been based on ad hoc hypotheses resulting in less than adequate models.?In this work we undertake a formal (numerical) examination of the dynamical system of equations that constitute the Reynolds stress closure model to investigate the following questions. (i) When does the RSCM equation system formally permit reduced representation? (ii) What is the dimensionality (number of independent variables) of the permitted reduced system? (iii) How can one derive the reduced system (algebraic Reynolds stress model) from the full RSCM equations? Our analysis reveals that a lower-dimensional representation of the RSCM equations is possible not only in the equilibrium limit, but also in the slow-manifold stage of non-equilibrium turbulence. The degree of reduction depends on the type of mean-flow deformation and state of turbulence. We further develop two novel methods for deriving algebraic Reynolds stress models from RSCM equations in non-equilibrium turbulence. The present work is expected to play an important role in bringing much of the sophistication of the RSCM into the realm of two-equation algebraic Reynolds stress models. Another objective of this work is to place the other algebraic stress modeling efforts in the lower-dimensional modeling context. Received 19 November 1999 and accepted 3 August 2000  相似文献   

4.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
The applicability of a finite element-differential method to the computation of steady two-dimensional low-speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen for the Reynolds shear stress and turbulent heat flux is the K-? two-equation model. Calculations are extended up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A number of transformations are carried out and the assumed solutions at a longitudinal station are represented by complete cubic spline functions. In essence, the method converts the governing partial differential equations into a system of ordinary differential equations by a weighted residuals method and invokes an ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy and applicability of the k-? turbulence model are examined by comparing results of the computations with experimental data. The agreement is very good.  相似文献   

6.
The performances of three linear eddy viscosity models (LEVM) and one algebraic Reynolds stress model (ARSM) for the simulation of turbulent flow inside and outside pressure-swirl atomizer are evaluated by comparing the interface position with available experimental data and by comparing the turbulence intensity profiles at the atomizer exit. It is found that the turbulence models investigated exhibit zonal behaviors, i.e. none of the models investigated performs well throughout the entire flow field. The turbulence intensity has a significant influence on the global characteristics of the flow field. The turbulence models with better predictions of the turbulence intensity, such as Gatski-Speziale’s ARSM model, can yield better predictions of the global characteristics of the flow field, e.g. the reattachment lengths for the backward-facing step flow and the sudden expansion pipe flow, or the discharge coefficient, film thickness and the liquid sheet outer surface position for the atomizer flows. The standard kε model predicts stronger turbulence intensity as compared to the other models and therefore yields smaller film thickness and larger liquid sheet outer surface position. In average, the ARSM model gives both quantitatively and qualitatively better results as compared to the standard kε model and the low Reynolds number models.  相似文献   

7.
The generalized Langevin model, which is used to model the motion of stochastic particles in the velocity–composition joint probability density function (PDF) method for reacting turbulent flows, has been extended to incorporate solid wall effects. Anisotropy of Reynolds stresses in the near-wall region has been addressed. Numerical experiments have been performed to demonstrate that the forces in the near-wall region of a turbulent flow cause the stochastic particles approachi ng a solid wall to reverse their direction of motion normal to the wall and thereby, leave the near-wall layer. This new boundary treatment has subsequently been implemented in a full-scale problem to prove its validity. The test problem considered here is that of an isothermal, non-reacting turbulent flow in a two-dimensional channel with plug inflow and a fixed back-pressure. An efficient pressure correction method, developed in the spirit of the PISO algorithm, has been implemented. The pressure correction strategy is easy to implement and is completely consistent with the time- marching scheme used for the solution of the Lagrangian momentum equations. The results show remarkable agreement with both k–ϵ and algebraic Reynolds stress model calculations for the primary velocity. The secondary flow velocity and the turbulent moments are in better agreement with the algebraic Reynolds stress model predictions than the k– ϵ predictions. © 1997 by John Wiley & Sons, Ltd.  相似文献   

8.
Fully explicit and self-consistent algebraic Reynolds stress model   总被引:2,自引:0,他引:2  
A fully explicit, self-consistent algebraic expression (for Reynolds stress) which is the exact solution to the Reynolds stress transport equation in the weak-equilibrium limit for two-dimensional mean flows for all linear and some quasi-linear pressure-strain models, is derived. Current explicit algebraic Reynolds stress models derived by employing the weak-equilibrium assumption treat the production-to-dissipation (P/) ratio as a constant, resulting in an effective viscosity that can be singular away from the equilibrium limit. In this paper the set of simultaneous algebraic Reynolds stress equations in the weak-equilibrium limit are solved in the full nonlinear form and the eddy viscosity is found to be nonsingular. Preliminary tests indicate that the model performs adequately, even for three-dimensional mean-flow cases. Due to the explicit and nonsingular nature of the effective viscosity, this model should mitigate many of the difficulties encountered in computing complex turbulent flows with the algebraic Reynolds stress models.This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480.  相似文献   

9.
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coroiolis-modified eddy-viscosity model, a realizable nonlinear eddy-viscosity model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the validation of the turbulence models. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.  相似文献   

10.
Different near-wall scalings are reviewed by the use of data from direct numerical simulations (DNS) of attached and separated adverse pressure gradient turbulent boundary layers. The turbulent boundary layer equation is analysed in order to extend the validity of existing wall damping functions to turbulent boundary layers under severe adverse pressure gradients. A proposed near-wall scaling is based on local quantities and the wall distance, which makes it applicable for general computational fluid dynamics (CFD) methods. It was found to have a similar behaviour as the pressure-gradient corrected analytical y* scaling and avoids the inconsistencies present in the y+ scaling. The performance of the model is illustrated by model computations using explicit algebraic Reynolds stress models with near-wall damping based on different scalings.  相似文献   

11.
A computational method has been developed to predict the turbulent Reynolds stresses and turbulent heat fluxes in ducts by different turbulence models. The turbulent Reynolds stresses and other turbulent flow quantities are predicted with a full Reynolds stress model (RSM). The turbulent heat fluxes are modelled by a SED concept, the GGDH and the WET methods. Two wall functions are used, one for the velocity field and one for the temperature field. All the models are implemented for an arbitrary three‐dimensional channel. Fully developed condition is achieved by imposing cyclic boundary conditions in the main flow direction. The numerical approach is based on the finite volume technique with a non‐staggered grid arrangement. The pressure–velocity coupling is handled by using the SIMPLEC‐algorithm. The convective terms are treated by the van Leer scheme while the diffusive terms are handled by the central‐difference scheme. The hybrid scheme is used for solving the ε equation. The secondary flow generation using the RSM model is compared with a non‐linear kε model (non‐linear eddy viscosity model). The overall comparison between the models is presented in terms of the friction factor and Nusselt number. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents a derivation of an explicit algebraic model for two-dimensional (2-D) buoyant flows. It is an extension of the work reported in Part I (So et al. [27]). The tensor representation method of Jongen and Gatski [14] is extended to derive an explicit algebraic Reynolds stress model (EASM) for 2-D buoyant flow invoking the Boussinesq approximation. The projection methodology is further extended to treat the heat flux transport equation in the derivation of an explicit algebraic heat flux model (EAHFM) for buoyant flow. Again, the weak equilibrium assumption is invoked for the scaled Reynolds stress and scaled heat flux equation. An explicit algebraic model for buoyant flows is then formed with the EASM and EAHFM. From the derived EAHFM, an expression for the thermal diffusivity tensor in buoyant shear flows is deduced. Furthermore, a turbulent Prandtl number (PrT) for each of the three heat flux directions is determined. These directional PrT are found to be a function of the gradient Richardson number. Alternatively, a scalar PrT can be derived; its value is compared with the directional PrT. The EASM and EAHFM are used to calculate 2-D homogeneous buoyant shear flows and the results are compared with direct numerical simulation data and other model predictions, where good agreement is obtained. Dedicated to the memory of the late Professor Charles G. Speziale of Boston University  相似文献   

13.
M = 2.25 shock‐wave/turbulent‐boundary‐layer interactions over a compression ramp for several angles (8, 13 and 18°) at Reynolds‐number Re=7 × 103 were simulated with three low‐Reynolds second‐moment closures and a linear low‐Reynolds standard k–ε model. A detailed assessment of the turbulence closures by comparison with both mean‐flow and turbulent experimental quantities is presented. The Reynolds‐stress model which is wall‐topology free and which uses an optimized redistribution closure, is in good agreement with experimental data both for wall‐pressure and mean‐velocity profiles. Detailed analysis of three components of the Reynolds‐stress tensor (comparison with measurements and transport‐equation budgets) provides a critical evaluation of full Reynolds‐stress models for the separated supersonic compression ramp. The discrepancy observed in the shock‐wave foot region, between computations and measurements for the Reynolds‐stresses profiles, could be explained by considering the experimental shock‐wave oscillation and directions for future modelling work are indicated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
The paper explores the possibilities that different turbulence closures offer, for in‐depth analysis of a complex flow. The case under investigation is steady, turbulent flow in a pipe with sudden expansion without/with normal‐to‐wall injection through jets. This is a typical geometry where generation of turbulence energy takes place, due to sudden change in boundary conditions. This study is aimed at investigating the capability of a developed computational program by the present authors with three different turbulence models to calculate the mean flow variables. Three two‐equation models are implemented, namely the standard linear k ? ε model, the low Reynolds number k ? ε model and the cubic nonlinear eddy viscosity (NLEV) k ? ε model. The performance of the chosen turbulence models is investigated with regard to the available data in the literature including velocity profiles, turbulent kinetic energy and reattachment position in a pipe expansion. In order to further assess the reliability of the turbulence models, an experimental program was conducted by the present authors also at the fluid mechanics laboratory of Menoufiya University. Preliminary measurements, including the surface pressure along the two walls of the expansion pipe and the pressure drop without and with the presence of different arrangements of wall jets produced by symmetrical or asymmetrical fluid cross‐flow injection, are introduced. The results of the present studies demonstrate the superiority of the cubic NLEV k ? ε model in predicting the flow characteristics over the entire domain. The simple low Reynolds number k ? ε model also gives good prediction, especially when the reattachment point is concerned. The evaluation of the reattachment point and the pressure‐loss coefficient is numerically addressed in the paper using the cubic NLEV k ? ε model. The results show that the injection location can control the performance of the pipe‐expansion system. It is concluded that the introduction of flow injection can increase the energy loss in the pipe expansion. The near‐field turbulence structure is also considered in the present study and it is noticed that the turbulence level is strongly affected by the cross‐flow injection and the jet location. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
A numerical study of scalar dispersion is presented to investigate the effectiveness of pairing the v2f turbulence model with algebraic models for the scalar flux. This approach is contrasted with utilizing a full Second Moment Closure (SMC) as the flow field input to the scalar model. Predictions of scalar transport in a turbulent channel and over a wavy wall are compared to available DNS databases. The latter case includes a scalar release from a point source and therefore detailed comparisons of the three-component turbulent scalar flux are reported. It is found that the transported variable v2, representing the near wall turbulent velocity fluctuation scale, can be used to increase the level of normal stress anisotropy provided to algebraic scalar models and thereby improve mean scalar prediction over that of the Standard Gradient Diffusion Hypothesis (SGDH). Improvement is most significant in the near wall region. Three specifications of the normal stresses, derived from v2, are considered to provide the link from the v2f model to the algebraic flux models used to close the scalar transport equation. Barycentric maps are used to examine the state of turbulence anisotropy in each case. As the anisotropy in the normal stress specification becomes more accurate, improvements are realized in the prediction of the spanwise flux as well as the mean concentration.  相似文献   

16.
This paper examines the modeling of two-dimensional homogeneous stratified turbulent shear flows using the Reynolds-stress and Reynolds-heat-flux equations. Several closure models have been investigated; the emphasis is placed on assessing the effect of modeling the dissipation rate tensor in the Reynolds-stress equation. Three different approaches are considered; one is an isotropic approach while the other two are anisotropic approaches. The isotropic approach is based on Kolmogorov's hypothesis and a dissipation rate equation modified to account for vortex stretching. One of the anisotropic approaches is based on an algebraic representation of the dissipation rate tensor, while another relies on solving a modeled transport equation for this tensor. In addition, within the former anisotropic approach, two different algebraic representations are examined; one is a function of the Reynolds-stress anisotropy tensor, and the other is a function of the mean velocity gradients. The performance of these closure models is evaluated against experimental and direct numerical simulation data of pure shear flows, pure buoyant flows and buoyant shear flows. Calculations have been carried out over a range of Richardson numbers (Ri) and two different Prandtl numbers (Pr); thus the effect of Pr on the development of counter-gradient heat flux in a stratified shear flow can be assessed. At low Ri, the isotropic model performs well in the predictions of stratified shear flows; however, its performance deteriorates as Ri increases. At high Ri, the transport equation model for the dissipation rate tensor gives the best result. Furthermore, the results also lend credence to the algebraic dissipation rate model based on the Reynolds stress anisotropy tensor. Finally, it is found that Pr has an effect on the development of counter-gradient heat flux. The calculations show that, under the action of shear, counter-gradient heat flux does not occur even at Ri = 1 in an air flow. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A resent extension of the nonlinear K–ε model is critically discussed from a basic theoretical standpoint. While it was said in the paper that this model was formulated to incorporate relaxation effects, it will be shown that the model is incapable of describing one of the most basic such turbulent flows as is obvious but is described for clarity. It will be shown in detail that this generalized nonlinear K–ε model yields erroneous results for the Reynolds stress tensor when the mean strains are set to zero in a turbulent flow – the return-to-isotropy problem which is one of the most elementary relaxational turbulent flows. It is clear that K–ε type models cannot describe relaxation effects. While their general formalism can describe relaxation effects, the nonlinear K–ε model – which the paper is centered on – cannot. The deviatoric part of the Reynolds stress tensor is predicted to be zero when it actually only gradually relaxes to zero. Since this model was formulated by using the extended thermodynamics, it too will be critically assessed. It will be argued that there is an unsubstantial physical basis for the use of extended thermodynamics in turbulence. The role of Material Frame-Indifference and the implications for future research in turbulence modeling are also discussed. Received 19 February 1998 and accepted 23 October 1998  相似文献   

18.
Numerical studies of the curved wake of a NACA 0012 airfoil of chord length 0.150 m are presented. The airfoil is placed in air at 10 m/s in the straight section of a duct of 0.457 m × 0.457 m cross‐section followed by a 90° bend with a mean radius‐to‐height ratio of 1.17. The trailing edge is located at one chord length upstream of the bend entry plane. The authors' own measurements are used to define the boundary conditions and for comparison with the predicted results. The numerical models are based on the time‐averaged, three‐dimensional conservation equations of fluid flow, incorporating the k–ε, RNG k–ε, realizable k–ε and the Reynolds stress turbulence models. The results show that the models are capable of predicting the effects of curvature on the wake development. However, quantitative differences between prediction and experiment exist. The results obtained using the Reynolds stress model show better agreement with the experimental data, compared with the k–ε based models, but not consistently for all parameters. There are also better predictions by the RNG k–ε and realizable k–ε models compared with the standard k–ε model. The predicted results using the RNG k–ε are closer to experimental data than the realizable k–ε. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
The bifurcation of confined swirling flows was numerically investigated by employing both the k-? and algebraic stress turbulence models. Depending upon the branch solution examined, dual flow patterns were predicted at certain swirl levels. In the lower-branch solution which is obtained by gradually increasing the swirl level from a low-swirl flow, the flow changes with increasing swirl number from the low-swirl flow pattern to a high-swirl flow pattern. In the upper-branch solution which is acquired by gradually decreasing the swirl level from a high-swirl flow, on the other hand, the flow can maintain itself in the high-swirl flow pattern at the swirl levels where it exhibits the low-swirl flow pattern in the lower branch. The bifurcation of confined swirling flows was predicted with either the k-? model or the algebraic stress model being employed. Both the k-? and algebraic stress models result in comparable and sufficiently good predictions for confined swirling flows if high-order numerical schemes are used. The reported poor performance of the k-? model was clarified to be mainly attributable to the occurrence of the bifurcation and the use of low-order numerical schemes.  相似文献   

20.
Calculations of mean velocities and Reynolds stresses are reported for the recirculating flow established in the wake of two‐dimensional polynomial‐shaped obstacles that are symmetrical about a vertical axis and mounted in the water channel downstream of a fully developed channel flow for Re=6×104. The study involves calculations of mean and fluctuating flow properties in the streamwise and spanwise directions and include comparisons with experimental data [Almeida GP, Durão DFG, Heitor MV. Wake flows behind two‐dimensional model hills. Experimental Thermal and Fluid Science 1993; 7: 87–101] for flow around a single obstacle with data resulting from the interaction of consecutive obstacles, using two versions of the low‐Reynolds number differential second‐moment (DSM) closure model. The results include analysis of the turbulent stresses in local flow co‐ordinates and reveal flow structure qualitatively similar to that found in other turbulent flows with a reattachment zone. It is found that the standard isotropization of production model (IPM), based on that proposed by Gibson and Launder [Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics 1978; 86(3): 191–511], with the incorporation of the wall reflection model of Craft and Launder [New wall‐reflection model applied to the turbulent impinging jet. AIAA Journal 1992; 32(12): 2970–2972] predicts the mean velocities quite well, but underestimates the size of the recirculation region and turbulent quantities in the shear layer. These inadequacies are circumvented by adopting a new cubic Reynolds stress closure scheme based on that more recently developed by Craft and Launder [A Reynolds stress closure designed for complex geometries. International Journal of Heat and Fluid Flow 1996; 17: 245–254] which satisfies the two component limit (TCL) of turbulence. In this model the geometry‐specific quantities, such as the wall‐normal vector or wall distance, are replaced by invariant dimensionless gradient indicators. Also, the model captures the diverse behaviour of the different components of the stress dissipation, εij, near the wall and uses a novel decomposition for the fluctuating pressure terms. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号