首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The dynamics of a low-viscosity fluid layer inside a rotating cylinder under transverse translational vibration relative to the rotation axis is investigated experimentally. A novel vibrational effect, the generation of intense azimuthal fluid flows with velocities comparable with the cavity rotation velocity, is revealed. The structure and intensity of the vibrational flows and the flow transformation with variation of the determining dimensionless parameters (frequency and vibrational acceleration) are studied.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, 2005, pp. 147–156.Original Russian Text Copyright © 2005 by Ivanova, Kozlov, and Polezhaev.  相似文献   

2.
The behavior of a light free cylindrical body in a rapidly rotating horizontal cylinder containing a liquid under vibrational action (the vibration direction is perpendicular to the rotation axis) is investigated. An intense rotation of the body relative to the cavity is detected. Depending on the vibration frequency, the body rotation velocity in the laboratory reference system may be higher or lower than the cavity rotation velocity and in the resonance region they may differ by several times. The mechanism of motion generation is theoretically described. It is shown that the motion is related with the excitation of inertial oscillations of the body: the cause of the motion is an average vibrational force generated due to nonlinear effects in the Stokes boundary layer near the oscillating body. The formation of large-scale axisymmetric vortex structures periodic along the rotation axis, which appear under conditions of inertial oscillation of the body during its motion, both leading and lagging, is detected.  相似文献   

3.
The equilibrium stability of a horizontal fluid layer with homogeneous internal heat release is investigated theoretically for the case in which the layer simultaneously undergoes high-frequency circular vibration in a horizontal plane and rotates about a vertical axis. The rotation frequency is assumed to be small as compared with the vibration frequency. It is found that the rotation has a stabilizing effect on the vibrational-gravitational convection. At the high-frequency limit the dependence of the critical values of the controlling parameters (gravitational and vibrational Rayleigh numbers) and the wave number on the rotation frequency is obtained.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 53–61. Original Russian Text Copyright © 2005 by Ivanova, Kozlov, and Kolesnikov.  相似文献   

4.
The average dynamics of two immiscible fluids of different densities in a rectangular cavity oscillating horizontally with a high frequency are investigated experimentally. The fluids are characterized by a small surface tension coefficient. The regularities of the quasi-steady spatial relief formation on the fluid interface are studied. It is shown that, in addition to the capillary and vibrational parameters, the pattern excitation threshold is determined by the dimensionless vibration frequency. In the limit of high dimensionless frequency, good agreement with the well-known theoretical results is obtained.  相似文献   

5.
An expression is obtained for the angular velocity of a spherical dispersed particle in a viscous fluid in an external vortex field with an harmonic time dependence. This expression is then used for investigating a system of two rotating dispersed particles whose rotation is the result of the interaction of the particles in the field of an incident sound wave. It is found that such a system possesses a rather interesting nontrivial property: under certain conditions it has a resonant frequency at which the rotation of the particles relative to the fluid is most intense.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 186–188, July–August, 1992.  相似文献   

6.
The thermal fluid convection in a coaxial horizontal gap uniformly rotating about its axis is investigated. The threshold above which convective flows are excited and the structure of these flows are studied. It is found that convection ensues irrespective of whether the inner or outer boundary temperature is higher. Convection manifests itself in the threshold development of rolls elongated in the direction of the rotation axis and is determined by two different mechanisms. If the layer is heated from outside, the centrifugal convection mechanism plays a leading part and the diameter of the convective rolls is comparable with the layer thickness. If the higher is the temperature of the inner boundary of the layer, the centrifugal inertia force has a stabilizing effect and convection development is related with the action of thermal vibrational mechanism. The latter is determined by gravity-generated oscillations of the nonisothermal fluid relative to the cavity. The wave number of the vibrational convective structures is several times smaller than under centrifugal convection. The results obtained broaden our understanding of thermal convection in systems rotating in external static force fields.  相似文献   

7.
The rotationally symmetric flow over a rotating disk in an incompressible viscous fluid is analyzed by a new method when the fluid at infinity is in a state of rigid rotation (in the same or in the opposite sense) about the same axis as that of the disk. Asymptotic expansions for the velocity field over the entire flow field are obtained for the general class of one-parameter rotationally symmetric flows. This method is further extended to the case when a uniform suction or injection is assumed at the rotating disk. Fluid motion induced by oscillatory suction of small amplitude at the rotating disk is also discussed.An initial-value analysis reveals that resonance is possible only when the angular velocity of the rotating fluid is greater than that of the rotating disk.  相似文献   

8.
The vibrational frequency analysis of finite elastic tube filled with compressible viscous fluid has received plenty of attention in recent years. To apply frequency analysis to defect detection for example, it is necessary to investigate the vibrational behavior under appropriate boundary conditions. In this paper, we present a detailed theoretical study of the three dimensional modal analysis of compressible fluid within an elastic cylinder. The dispersion equations of flexural, torsional and longitudinal modes are derived by elastodynamic theory and the unsteady Stokes equation. The symbolic software Mathematica is used in order to find the coupled vibration frequencies. The dispersion equation is deduced and analytically solved. The finite element results are compared with the present method for validation and an acceptable match between them are obtained.  相似文献   

9.
The behavior of a light cylindrical body of circular cross-section under horizontal vibration in a rectangular cavity filled with a fluid is experimentally investigated. At critical vibration intensity the body is repelled from the upper side of the cavity and takes up a stable suspended position, in which the gravity field is balanced by the vibrational repulsive force, executing longitudinal oscillations. As the vibrations are intensified, the gap between the cylinder and the wall widens. A new form of instability, namely, the excitation of the tangential motion of the body along the vibration axis, is found to exist on the supercritical range. The cylinder is at a finite distance from the upper side of the cavity and the tangential motion is due to the loss of symmetry of the oscillating motion. The transition of the cylinder to the suspended state and its return to the wall, as well as the excitation of the average longitudinal motion and its cessation, occur thresholdwise and have a hysteresis. The body dynamics are studied as a function of the dimensionless vibration frequency.  相似文献   

10.
The nonlinear vibrations of a rotating cantilever beam made of magnetoelastic materials surrounded by a uniform magnetic field are investigated. The kinetic energy, potential energy and work done by the electromagnetic force are obtained. A nonlinear dynamic model, based on the Hamilton principle, which includes the stretching vibration and bending vibration is presented. The Galerkin method is adopted to discretize the dynamic equations. The proposed method is validated by comparison with the literature. The nonlinear behaviors of the responses are studied. Then simulations for different kinds of magnetic field are conducted. The effects of magnetic field parameters, including the amplitude, plane angle, spatial angle and time-varying frequency, on the dynamic behaviors of the stretching motion and bending motion are investigated in detail. The results illustrate that the interaction effects between the rotating cantilever beam and the magnetic field will increase the vibration amplitude and fluctuation of the beam. In particular, we found that: collinear magnetic fields with equal amplitude lead to the same dynamic responses; the amplitude of magnetic field intensity increases the dynamic responses remarkably; the response amplitude changes nonlinearly with the plane angle and spatial angle of the magnetic field; and the increase of time-varying frequency enhances dynamic responses of the rotating cantilever beam.  相似文献   

11.
本文基于非局部弹性理论,对旋转压电纳米梁模型的振动进行了分析.首先由哈密顿原理导出旋转压电纳米梁的动力学控制方程及相应的边界条件;再通过微分求积法对控制方程和两类边界条件进行离散;最后通过数值计算分析振动特性.通过改变旋转角速度、轮毂半径、非局部参数以及外部电压分析它们对压电纳米梁振动频率的影响关系.数值结果表明这些参数对压电纳米梁固有频率有不可忽略的影响,本文进一步讨论了旋转角速度对结构模态的影响.  相似文献   

12.
M. Guria  B. K. Das  R. N. Jana 《Meccanica》2007,42(5):487-493
An analytical solution of the unsteady Navier–Stokes equations is obtained for the flow due to non-coaxial rotations of an oscillating porous disk and a fluid at infinity, rotating about an axis parallel to the axes of rotation of the disk through a fixed point. The velocity distributions and the shear stresses at the disk are obtained for three different cases when the frequency parameter is greater than, equal to or less than the rotation parameter. The flow has a boundary layer structure even in the case of blowing at the disk.  相似文献   

13.
Thermal convection of a fluid in a horizontal cylinder rotating about its own axis with uniformly volume-distributed internal heat sources is experimentally investigated. The enclosure boundary temperature was kept constant. The threshold of the excitation of convective flows and their structure are studied as functions of the heat-release intensity and the rotation velocity. The experiments are performed with water and water-glycerin solutions. It is shown that rapidly rotating fluid is in a stable quasiequilibrium state, namely, the temperature distribution is axisymmetric and has a maximum at the center of the enclosure. It is found that with decrease in the rotation velocity a convective flow arises thresholdwise, in the form of vortex cells periodically arranged along the axis. The thermal convection in the rotating enclosure is shown to be determined by the effects of two different mechanisms. One of these is due to the centrifugal force of inertia and plays the stabilizing role, while the other, thermovibrational mechanism is connected with nonisothermal fluid oscillations under the action of gravity in the enclosure-fitted reference frame and is responsible for the occurrence of mean thermal convection. The boundaries of the convection generation are plotted in the plane of the governing dimensionless parameters and the heat transfer in the supercritical region is studied.  相似文献   

14.
The principles and methods of constructing a model of vibrational convection in a medium consisting of a liquid (gas) and a solid admixture are discussed. A closed system of averaged equations is first obtained. The system admits passage to the limits of the equations of both vibrational convection in a homogeneous fluid and convection in a dusty medium in the static case. As a measure of the difference with respect to the homogeneous fluid, in addition to the sedimentation parameter, which also manifests itself in the absence of vibrational accelerations, it is possible to take the inhomogeneity parameter introduced in this study and responsible for the pulsatory transport of the average fields. The problem of the stability of plane parallel flow in a vertical layer of a two-phase medium under horizontal longitudinal vibration with respect to infinitesimal perturbations is considered. It is shown that the introduction of particles into the flow leads to qualitatively novel effects which cannot be predicted within the framework of the homogeneous fluid model.  相似文献   

15.
A numerical study of tangential layers in steady‐state magnetohydrodynamic rotating flows is presented using CFD to solve the inductionless governing equations. The analysis considers two basic flow configurations. In the first, a fluid is enclosed in a cylinder with electrically perfect conducting walls and the flow is driven by a small rotating, conducting disk. In the second, a flow is considered in a spherical shell with an inner rotating sphere. The fluid in both cases is subjected to an external axial uniform magnetic field. The results show that these flows exhibit two different types of flow cores separated from each other by a tangential layer parallel to the axis of rotation. The inner core follows a solid‐body rotation while the outer is quasistagnant. A counter‐rotating jet is developed in the tangential layer between the cores. The characteristics of the tangential layer and the properties of the meridional motion are determined for a wide range of Hartmann numbers. Distributions of angular velocity of circumferential flow and electric potential are obtained and the results are compared with those of analytic methods. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Steady flow generated by oscillations of an inner solid core in a fluid-filled rotating spherical cavity is experimentally studied. The core with density less than the fluid density is located near the center of the cavity and is acted upon by a centrifugal force. The gravity field directed perpendicular to the rotation axis leads to a stationary displacement of the core from the rotation axis. As a result, in the frame of reference attached to the cavity, the core performs circular oscillation with frequency equal to the rotation frequency, and its center moves along a circular trajectory in the equatorial plane around the center of the cavity. For the differential rotation of the core to be absent, one of the poles of the core is connected to the nearest pole of the cavity with a torsionally elastic, flexible fishing line. It is found that the oscillation of the core generates axisymmetric azimuthal fluid flow in the cavity which has the form of nested liquid columns rotating with different angular velocities. Comparison with the case of a free oscillating core which performs mean differential rotation suggests the existence of two mechanisms of flow generation (due to the differential rotation of the core in the Ekman layer and due to the oscillation of the core in the oscillating boundary layers).  相似文献   

17.
Based on a non-linear strain–displacement relationship of a non-rotating twisted and open conical shell on thin shell theory, a numerical method for free vibration of a rotating twisted and open conical shell is presented by the energy method, where the effect of rotation is considered as initial deformation and initial stress resultants which are obtained by the principle of virtual work for steady deformation due to rotation, then an energy equilibrium of equation for vibration of a twisted and open conical shell with the initial conditions is also given by the principle of virtual work. In the two numerical processes, the Rayleigh–Ritz procedure is used and the two in-plane and a transverse displacement functions are assumed to be algebraic polynomials in two elements. The effects of characteristic parameters with respect to rotation and geometry such as an angular velocity and a radius of rotating disc, a setting angle, a twist angle, curvature and a tapered ratio of cross-section on vibration performance of rotating twisted and open conical shells are studied by the present method.  相似文献   

18.
《Comptes Rendus Mecanique》2007,335(5-6):304-314
The response of a two-phase stratified liquid system subject to a vibration parallel to an imposed temperature gradient is analyzed using a hybrid thermal lattice Boltzmann method (HTLB). The vibrations considered correspond to sinusoidal translations of a rigid cavity at a fixed frequency. The layers are thermally and mechanically coupled. Interaction between gravity-induced and vibration-induced thermal convection is studied. The ability of the applied vibration to enhance the flow, heat transfer and interface distortion is investigated. For the range of conditions investigated, the results reveal that the effect of the vibrational Rayleigh number and vibrational frequency on a two-phase stratified fluid system is much different from that for a single-phase fluid system. Comparisons of the response of a two-phase stratified fluid system with a single-phase fluid system are discussed. To cite this article: Q. Chang, J.I.D. Alexander, C. R. Mecanique 335 (2007).  相似文献   

19.
热环境中旋转运动功能梯度圆板的强非线性固有振动   总被引:1,自引:0,他引:1  
研究热环境中旋转运动功能梯度圆板的非线性固有振动问题.针对金属-陶瓷功能梯度圆板,考虑几何非线性、材料物理属性参数随温度变化以及材料组分沿厚度方向按幂律分布的情况,应用哈密顿原理推得热环境中旋转运动功能梯度圆板的非线性振动微分方程.考虑周边夹支边界条件,利用伽辽金法得到了横向非线性固有振动方程,并确定了静载荷引起的静挠度.用改进的多尺度法求解强非线性方程,得出非线性固有频率表达式.通过算例,分析了旋转运动功能梯度圆板固有频率随转速、温度等参量的变化情况.结果表明,非线性固有频率随金属含量的增加而降低;随转速和圆板厚度的增大而升高;随功能梯度圆板表面温度的升高而降低.  相似文献   

20.
Thermally Induced,Nonlinear Vibrations of Rotating Disks   总被引:1,自引:0,他引:1  
The natural frequency and responses for the nonlinear free vibration ofheated rotating disks are presented analytically when nonuniformtemperature distributions pertaining to the laminar and turbulentairflow induced by disk rotation are considered. The nonuniformtemperature distributions on the disk are highly dependent on itsrotation speed. The natural frequencies for symmetric and asymmetricresponses of a 3.5 inch diameter computer memory disk are calculated.When the disk is heated, its stiffness becomes larger for the two lowestnodal diameter numbers and smaller for the other nodal diameter numbers.It implies that the vibration of heated, rotating disks for the highernodal diameter numbers may be induced more easily than the cooled one.The results for the nonlinear vibration can reduce to those for thelinear vibration when the nonlinear effects vanish. To furtherinvestigate of the interaction of thermal and nonlinearity of rotatingdisks, the temperature distribution for such a rotating disk needs to bedeveloped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号