首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A three-dimensional second-order closure dispersion model is used to simulate the plume behaviour of a passive contaminant in a convective boundary layer. A time-splitting finite element method together with a non-linear filtering scheme is used to solve the three-dimensional second-order closure transport equations. The model results show good agreement with laboratory data for a ground level source.  相似文献   

2.
A numerical procedure for solving the time-dependent, incompressible Navier-Stokes equations is presented. The present method is based on a set of finite element equations of the primitive variable formulation, and a direct time integration method which has unique features in its formulation as well as in its evaluation of the contribution of external functions. Particular processes regarding the continuity conditions and the boundary conditions lead to a set of non-linear recurrence equations which represent evolution of the velocities and the pressures under the incompressibility constraint. An iteration process as to the non-linear convective terms is performed until the convergence is achieved in every integration step. Excessively artificial techniques are not introduced into the present solution procedure. Numerical examples with vortex shedding behind a rectangular cylinder are presented to illustrate the features of the proposed method. The calculated results are compared with experimental data and visualized flow fields in literature.  相似文献   

3.
A numerical scheme is developed to predict the heat transfer and pressure drop coefficients in flow through rigid tube bundles. The scheme uses the Galerkin finite element technique. The conservation equations for laminar steady-state flow are cast in the form of streamfunction and vorticity equations. A Picard iteration method is used for the solution of the resulting system of non-linear algebraic equations. Results for the heat transfer and pressure drop coefficients are obtained for tube arrays of pitch ratios of 1·5 and 2·0. Very good agreement of the present results and experimental data obtained in the past is observed up to Reynolds numbers of 1000. It is also observed that the results of the present method show better agreement with the experimental data and that they are applicable for higher Reynolds numbers than results of other studies.  相似文献   

4.
An inverse method is presented which accurately determines the pressure distribution for assigned wall shear in a two-dimensional, laminar, incompressible boundary layer. The method reformulates the mechul function scheme of Cebeci and Keller to produce a stable solution in the marching direction and to increase accuracy in the normal direction. In the reformulation a modified pressure gradient parameter variation in the normal direction is used in conjunction with three-point backward differences for streamwise derivatives and fourth-order accurate splines for normal derivatives. The resulting spline-finite difference equations are solved by Newton-Raphson iteration together with partial pivoting. Numerical solutions are presented for self-similar and non self-similar flows and compared with published results.  相似文献   

5.
A low-cost semi-analysis finite element technique, named the finite piece method (FPM) is presented in this article. It aims to solve three-dimensional (3D) viscoelastic slit flows. The viscoelastic stress of the fluid is modelled using an K-BKZ integral constitutive equation of the Wagner type. Picard iteration is used to solve non-linear equations. The FPM is tested on flow problems in both planar and contraction channels. The accuracy of the method is assessed by comparing flow distributions and pressure with results obtained by 3D finite element method (FEM). It shows that the solution accuracy is excellent and a substantial amount of computing time and memory requirement can be saved.  相似文献   

6.
A nested non-linear multigrid algorithm is developed to solve the Navier–Stokes equations which describe the steady incompressible flow past a sphere. The vorticity–streamfunction formulation of the Navier–Stokes equations is chosen. The continuous operators are discretized by an upwind finite difference scheme. Several algorithms are tested as smoothing steps. The multigrid method itself provides only a first-order-accurate solution. To obtain at least second-order accuracy, a defect correction iteration is used as outer iteration. Results are reported for Re = 50, 100, 400 and 1000.  相似文献   

7.
A new Lagrangian finite element formulation is presented for time-dependent incompressible free surface fluid flow problems described by the Navier-Stokes equations. The partial differential equations describing the continuum motion of the fluid are discretized using a Galerkin procedure in conjunction with the finite element approximation. Triangular finite elements are used to represent the dependent variables of the problem. An effective time integration procedure is introduced and provides a viable computational method for solving problems with equality of representation of the pressure and velocity fields. Its success has been attributed to the strict enforcement of the continuity constraint at every stage of the iterative process. The capabilities of the analysis procedure and the computer programs are demonstrated through the solution of several problems in viscous free surface fluid flow. Comparisons of results are presented with previous theoretical, numerical and experimental results.  相似文献   

8.
A new finite element method for solving the time-dependent incompressible Navier-Stokes equations with general boundary conditions is presented. The two second-order partial differential equations for the vorticity and the stream function are factorized, apart from the non-linear advection term, by eliminating the coupling due to the double specification on the stream function at (a part of) the boundary. This is achieved by reducing the no-slip boundary conditions to projection integral conditions for the vorticity field and by evaluating the relevant quantities involved according to an extension of the method of Glowinski and Pironneau for the biharmonic problem. Time integration schemes and iterative algorithms are introduced which require the solution only of banded linear systems of symmetric type. The proposed finite element formulation is compared with its finite difference equivalent by means of a few numerical examples. The results obtained using 4-noded bilinear elements provide an illustration of the superiority of the finite element based spatial discretization.  相似文献   

9.
A finite element model is developed based on the penalty formulation to study incompressible laminar flows. The study includes a number of new quadrilateral and triangular elements for 2-dimensional flows and a number of new hexahedral and tetrahedral elements for 3-dimensional flows. All elements employ continuous velocity approximations and discontinuous pressure approximations respecting the LBB condition of numerical instability. An incremental Newton–Raphson method coupled with the Broyden method is used to solve the non-linear equations. Several numerical examples (colliding flow, cavity flow, etc.) are presented to assess the efficiency of elements.  相似文献   

10.
In this study, time-dependent fully discretized least-squares finite element model is developed for the transient response of Cosserat rod having inextensibility and unshearability constraints to simulate a surgical thread in space. Starting from the kinematics of the rod for large deformation, the linear and angular momentum equations along with constraint conditions for the sake of completeness are derived. Then, the α-family of time derivarive approximation is used to reduce the governing equations of motion to obtain a semi-discretized system of equations, which are then fully discretized using the least-squares approach to obtain the non-linear finite element equations. Newton׳s method is utilized to solve the non-linear finite element equations. Dynamic response due to impulse force and time-dependent follower force at the free end of the rod is presented as numerical examples.  相似文献   

11.
The present paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of an incompressible viscous fluid over an unsteady stretching sheet which is placed in a porous medium in the presence of viscous dissipation and internal absorption or generation. Similarity transformations are used to convert the governing time dependent nonlinear boundary layer equations into a system of non-linear ordinary differential equations containing Prandtl number, Eckert number, heat source/sink parameter, porous parameter and unsteadiness parameter with appropriate boundary conditions. These equations are solved numerically by applying shooting method using Runge-Kutta-Fehlberg method. Comparison of numerical results is made with the earlier published results under limiting cases. The effects of the parameters which determine the velocity and temperature fields are discussed in detail.  相似文献   

12.
An implicit, upwind arithmetic scheme that is efficient for the solution of laminar, steady, incompressible, two-dimensional flow fields in a generalised co-ordinate system is presented in this paper. The developed algorithm is based on the extended flux-vector-splitting (FVS) method for solving incompressible flow fields. As in the case of compressible flows, the FVS method consists of the decomposition of the convective fluxes into positive and negative parts that transmit information from the upstream and downstream flow field respectively. The extension of this method to the solution of incompressible flows is achieved by the method of artificial compressibility, whereby an artificial time derivative of the pressure is added to the continuity equation. In this way the incompressible equations take on a hyperbolic character with pseudopressure waves propagating with finite speed. In such problems the ‘information’ inside the field is transmitted along its characteristic curves. In this sense, we can use upwind schemes to represent the finite volume scheme of the problem's governing equations. For the representation of the problem variables at the cell faces, upwind schemes up to third order of accuracy are used, while for the development of a time-iterative procedure a first-order-accurate Euler backward-time difference scheme is used and a second-order central differencing for the shear stresses is presented. The discretized Navier–Stokes equations are solved by an implicit unfactored method using Newton iterations and Gauss–Siedel relaxation. To validate the derived arithmetical results against experimental data and other numerical solutions, various laminar flows with known behaviour from the literature are examined. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The numerical method of lines (NUMOL) is a numerical technique used to solve efficiently partial differential equations. In this paper, the NUMOL is applied to the solution of the two‐dimensional unsteady Navier–Stokes equations for incompressible laminar flows in Cartesian coordinates. The Navier–Stokes equations are first discretized (in space) on a staggered grid as in the Marker and Cell scheme. The discretized Navier–Stokes equations form an index 2 system of differential algebraic equations, which are afterwards reduced to a system of ordinary differential equations (ODEs), using the discretized form of the continuity equation. The pressure field is computed solving a discrete pressure Poisson equation. Finally, the resulting ODEs are solved using the backward differentiation formulas. The proposed method is illustrated with Dirichlet boundary conditions through applications to the driven cavity flow and to the backward facing step flow. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The generalized integral transform technique is employed in the hybrid numerical-analytical solution of the Navier-Stokes equations in streamfunction-only formulation, which govern the incompressible laminar flow of a Newtonian fluid within a parallel plate channel. Owing to the analytic nature of this approach, the outflow boundary condition for an infinite duct is handled exactly, and the error involved in considering finite duct lengths is investigated. The present error-controlled solutions are used to inspect the relative accuracy of previously reported purely numerical schemes and to compare Navier-Stokes and boundary layer formulations for various combinations of inlet conditions and Reynolds number.  相似文献   

15.
A Newton's method scheme is described for solving the system of non-linear algebraic equations arising when finite difference approximations are applied to the Navier–Stokes equations and their associated boundary conditions. The problem studied here is the steady, buoyancy-driven motion of a deformable bubble, assumed to consist of an inviscid, incompressible gas. The linear Newton system is solved using both direct and iterative equation solvers. The numerical results are in excellent agreement with previous work, and the method achieves quadratic convergence.  相似文献   

16.
In order to simulate geophysical general circulation processes, to simplify the governing equations of motion, often the vertical momentum equation of the Navier-Stokes equations is replaced by the hydrostatic approximation equation. The resulting equations are reformulated and a variational formulation of the linearized problem is derived. Iteration schemes are presented to solve this problem. A finite element method is discussed, as well as a finite difference method which is based on a grid that is often used in geophysical general circulation models. The schemes are extended to the non-linear case. Numerical examples are presented to demonstrate the performance of the derived iteration schemes.  相似文献   

17.
The solution of the non-linear set of equations arising from the application of the finite element method to non-Newtonian fluid flow problems often requires large amounts of computer time. Four iteration schemes (Picard, Newton-Raphson, Broyden and Dominant Eigenvalue method) are compared in three different flow geometries using a shear-thinning fluid model. Points of comparison involve the computer time necessary to converge the equations, ease of implementation, radius of convergence and rate of convergence.  相似文献   

18.
The prime objective of the present study is to examine the effect of temperature dependent viscosity μ(T) on the revolving axi-symmetric laminar boundary layer flow of an incompressible, electrically non-conducting ferrofluid in the presence of a stationary plate subjected to a magnetic field and maintained at a uniform temperature. To serve this purpose, the non-linear coupled partial differential equations are firstly converted into the ordinary differential equations using well-known similarity transformations. The popular finite difference method is employed to discretize the non-linear coupled differential equations. These discretized equations are then solved using the Newton method in MATLAB, for which an initial guess is made with the help of the Flex PDE Solver. Along with the velocity profiles, the effects of temperature dependent viscosity are also examined on the skin friction, the heat transfer, and the boundary layer displacement thickness. The obtained results are presented numerically as well as graphically.  相似文献   

19.
In this paper, a Galerkin weighted residual finite element numerical solution method, with velocity material time derivative discretisation, is applied to solve for a classical fluid mechanics system of partial differential equations modelling two‐dimensional stationary incompressible Newtonian fluid flow. Classical examples of driven cavity laminar flow and laminar flow past a cylinder are presented. Numerical results are compared with data found in the literature. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes a three-step finite element method and its applications to unsteady incompressible fluid flows. Stability analysis of the one-dimensional pure convection equation shows that this method has third-order accuracy and an extended numerical stability domain in comparison with the Lax--Wendroff finite element method. The method is cost-effective for incompressible flows because it permits less frequent updates of the pressure field with good accuracy. In contrast with the Taylor-Galerkin method, the present method does not contain any new higher-order derivatives, which makes it suitable for solving non-linear multidimensional problems and flows with complicated boundary conditions. The three-step finite element method has been used to simulate unsteady incompressible flows. The numerical results obtained are in good agreement with those in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号