首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of temperature dependent viscosity on revolving axi-symmetric ferrofluid flow with heat transfer
Authors:P Ram  V Kumar
Institution:Department of Mathematics, National Institute of Technology, Kurukshetra, Haryana 136119, India
Abstract:The prime objective of the present study is to examine the effect of temperature dependent viscosity μ(T) on the revolving axi-symmetric laminar boundary layer flow of an incompressible, electrically non-conducting ferrofluid in the presence of a stationary plate subjected to a magnetic field and maintained at a uniform temperature. To serve this purpose, the non-linear coupled partial differential equations are firstly converted into the ordinary differential equations using well-known similarity transformations. The popular finite difference method is employed to discretize the non-linear coupled differential equations. These discretized equations are then solved using the Newton method in MATLAB, for which an initial guess is made with the help of the Flex PDE Solver. Along with the velocity profiles, the effects of temperature dependent viscosity are also examined on the skin friction, the heat transfer, and the boundary layer displacement thickness. The obtained results are presented numerically as well as graphically.
Keywords:ferrofluid  temperature dependent viscosity  boundary layer  axi-symmetry  magnetic field  gas particle two-phase flow  round jet  large vortex stucture  particle dispersion  
本文献已被 维普 SpringerLink 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号