首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Delaminated regions figure prominently among potential threats to the structural integrity of layered plate configurations. Under a certain thermal loading threshold, geometrically nonlinear local instabilities in the form of buckling or wrinkling across the delaminated region crop up, giving rise to markedly amplified distributions of contour peeling stresses. The present paper aims to shed light on and quantify the manifold aspects and implications of the delamination-thermal-wrinkling trio. The paper faces the challenges of handling the nature of the layered configuration, the inherent geometrical irregularity of delaminated regions, the discontinuous interfacial conditions, the 3D stress state along the delamination contour, and the nonlinear evolution of local instabilities across an orthotropic delamination. For that purpose, a specially tailored 2D multi layered plate model and a corresponding triangular finite element are derived. The original contribution of the proposed model is in its ability to capture the thermally-driven, nonlinear small scale phenomena related to geometrically nonlinear response of the layered structure, using a 2D multi-layered plate theory solved with efficient 2D multi-layered triangular finite elements, as opposed to computationally expensive 3D finite element analysis. This is accomplished via the integration and synergy of methodologies that include: multi-layered high order plate theory to account for the layered layout, geometrically nonlinear strain-displacement relations to account for geometrical nonlinearities, orthotropic and thermo-elastic constitutive laws to account for thermal loads, and interlayer interface modelling which, combined with a the shear-locking free triangular FE, allows accounting for arbitrarily shaped delaminations. The model is validated against a 1D closed form solution and a 3D continuum based finite element analysis and is then used for a numerical study. In the study, the onset and the evolution of local instabilities in an adhesively bonded orthotropic layer across an irregular delamination are looked into. Special attention is given to the significant influence of material orthotropy and the relative directionality of the delamination on the threshold thermal load, the nonlinear wrinkling patterns, and the peeling traction distribution.  相似文献   

3.
Elasto-plastic buckling of orthotropic laminated plates, which include interfacial damage, is analyzed in detail. Firstly, a novel mixed hardening yield criterion, as an improvement of Hill’s counterpart, is proposed for the orthotropic materials on the basis of the plastic theory. And differing from Hill’s theory, the present yield criterion is related to the spherical tensor of stress. Then, the incremental elasto-plastic constitutive relations of the mixed hardening orthotropic materials are presented. Secondly, the incremental static equilibrium equations for laminated plates including interfacial damage are established based on Von-Karman type theory and the principle of minimum potential energy. Finally, the elasto-plastic buckling of laminated plates are solved by adopting the Galerkin method and iteration scheme. The numerical results show that buckling of the plate occurs easier due to the existence of interfacial damage, and the critical load trends to constant when the interfacial damage approaches a certain degree. Also, the effect of anisotropy on buckling is obvious and the analysis of elasto-plastic buckling is necessary.  相似文献   

4.
含有分层损伤的复合材料加筋层合板的屈曲性态研究   总被引:8,自引:3,他引:5  
基于Mindin假定推导了考虑剪切的复合材料加筋层板的有限元列式,并在此基础上计算出筋间基板含嵌入分层以及筋与基板连接处含穿透分层的加筋层合板在受压缩载荷情况下的屈曲模式和临界力。本文所给出的有限元方法及结论对从事复合材料结构设计的工程人员具有参考价值。  相似文献   

5.
本文研究了具有任意位置透型脱层的复合材料梁的屈曲问题。基于弹性理论建立了复合材料脱层梁的基本方程式。对脱层梁进行了分区处理,利用B样条函数作为位移型函数的基函数,方便地描述了脱层长度、脱层位置。考虑边界条件、区间位移连续性条件和弯矩剪力的平衡条件以及纵向内力的附加条件,对基本方程式进行了求解。得出了脱层位置不同,脱层长度不同的屈曲荷载的变化规律,并与轴对称脱层时的屈曲荷载进行了比较,认为层合梁考虑脱层对屈曲的影响是非常必要的。  相似文献   

6.
An improved analytical model is presented to analyze the delamination buckling of a bi-layer beam-column with a through-the-width delamination. Both the transverse shear deformation and local delamination tip deformations are taken into consideration, and two delaminated sub-layers as well as two substrates in the intact (un-delaminated) regions are modeled as individual Timoshenko beams. A deformable interface is introduced to establish the continuity condition between the two substrates in the intact regions. Consequently, a flexible joint is formed at the delamination tip, and it is different from the conventional rigid joint given in most of studies in the literature, in which the local delamination tip deformations are completely ignored. In contrast to the local delamination buckling in our previous study (Qiao et al., 2010), the present model accounts for the global deformations of the intact region in the delaminated composite beam-column, thus capable of capturing the buckling mode shape transitions from the global, to global–local coexistent, and to local buckling for asymmetric delamination as the interface delamination increases. Good agreement of the present analytical solutions with the full 2-D elastic finite element analysis demonstrates the local deformation effects around the delamination tip and verifies the accuracy of the present model. Parametric studies are conducted to investigate the effects of loading eccentricity, delaminated sub-layer thickness ratio, and interface compliance on the critical buckling load for the delaminated composite beam-column. Transitions of buckling modes from the global to local delamination buckling are also disclosed as the thickness of one sub-layer reduces from the thick sub-layer to a thin film. The developed delamination buckling solution facilitates the design analysis and optimization of laminated composite structures, and it can be used with confidence in buckling analysis of delaminated composite structures.  相似文献   

7.
In this paper a refined higher-order global-local theory is presented to analyze the laminated plates coupled bending and extension under thermo-mechanical loading. The in-plane displacement fields are composed of a third-order polynomial of global coordinate z in the thickness direction and 1,2–3 order power series of local coordinate ζk in the thickness direction of each layer, which is identical to the 1,2–3 global-local higher-order theory by Li and Liu [Li, X.Y., Liu, D., 1997. Generalized laminate theories based on double superposition hypothesis. Int. J. Numer. Methods Eng. 40, 1197–1212] Moreover, a second-order polynomial of global coordinate z in the thickness direction is chosen as transverse displacement field. The transverse shear stresses can satisfy continuity at interfaces, and the number of unknowns does not depend on the layer numbers of the laminate.Based on this theory, a quadrilateral laminated plate element satisfying the requirement of C1 continuity is presented. By solving both bending and thermal expansion problems of laminates, it can be found that the present refined theory is very accurate and obviously superior to the existing 1,2–3 global-local higher-order theory. The most attractive feature of this theory is that the transverse shear stresses can be accurately predicted from direct use of constitutive equations without any post-processing method. It is also shown that the present quadrilateral element possesses higher accuracy.  相似文献   

8.
ANALYSIS ON BUCKLING AND POSTBUCKLING OF DELAMINATION IN 3D COMPOSITES   总被引:2,自引:0,他引:2  
In this paper, the problem of axisymmetric buckling and postbuckling of a circular thin-film delamination bridged by through-thickness fiber tows in 3D composites is presented. An iterativeprocedure based on Taylor's series expansion is used to generate a family of nondimensionalized post-buckling solutions of the above problem by yon Karman's nonlinear plate theory. Attention is fo-cused, herein, on the effects of the bridge force of through-thickness fibers on the buckling and post-buckling behavior of the delamination. It is found that fiber bridge not only increases the ability of re-sisting delamination buckling and postbuckling, but also brings on the jump of the delamination deflec-tion mode during the postbuckling phase. Consequently the behavior of the composite structure with de-lamination is greatly improved, such as increasing the residual strength and prolonging the service life.  相似文献   

9.
This paper addresses the buckling and post-buckling of laminated composite plates using higher order shear deformation theory associated with Green–Lagrange non-linear strain–displacement relationships. All higher order terms arising from nonlinear strain–displacement relations are included in the formulation. The present plate theory satisfies zero transverse shear strain conditions at the top and bottom surfaces of the plate in von Karman sense. A C0 isoparametric finite element is developed for the present nonlinear model.  相似文献   

10.
This paper presents a nonlinear model for cross-ply piezoelastic laminated plates containing the damage effect of the intralayer materials and interlaminar interfaces. The model is based on the general six-degrees-of-freedom plate theory, the discontinuity of displacement, and electric potential on the interfaces are depicted by three shape functions, which are formulated according to solutions about three equilibrium equations and conservation of charge. By using the Hamilton variation principle, the three-dimensional nonlinear dynamic equations of piezoelastic laminated plates with damage are presented. Then using the finite difference method and the Newmark scheme, an analytical solution is presented. In numerical examples, the effects of different damage models, damage evolution, amplitude and frequency of electric loads on the nonlinear dynamic response of piezoelectric laminated plate with interfacial imperfections are investigated.  相似文献   

11.
Optimum design of laminated composite sandwich plates with both continuous (core thickness) and discrete (layer group fiber angles and thicknesses) design variables subjected to strength constraint is studied via a two-level optimization technique. The strength of a sandwich plate is determined in a failure analysis using the Tsai–Wu failure criterion and the finite element method which is formulated on the basis of the layerwise linear displacement theory. In the first level optimization of the design process, the discrete design variables are temporarily treated as continuous variables and the corresponding minimum weight of the sandwich plate is evaluated subject to the strength constraint using a constrained multi-start global optimization method. In the second level optimization, the optimal solution obtained in the first level optimization is used in the branch and bound method for solving a discrete optimization problem to determine the optimal design parameters and the final weight of the plate. Failure test of laminated composite foam-filled sandwich plates with different lamination arrangements are performed to validate the proposed optimal design method. A number of examples of the design of laminated composite foam-filled sandwich plates are given to demonstrate the feasibility and applications of the proposed method.  相似文献   

12.
爆炸冲击下复合材料层合扁球壳的动力屈曲   总被引:1,自引:0,他引:1  
研究计及横向剪切的复合材料层合扁球壳在爆炸冲击载荷作用下的非线性轴对称动力屈曲问题。通过在复合材料层合扁球壳非线性稳定性的基本方程中增加横向转动惯量项并引入R.H.Cole理论的爆炸冲击力,得到爆炸冲击下复合材料层合扁球壳的动力控制方程,应用Galerkin方法得到用顶点挠度表达的爆炸冲击动力响应方程,并采用Runge-Kutta方法进行数值求解,采用Budiansky-Roth准则确定冲击屈曲的临界载荷,讨论了壳体几何尺寸对复合材料层合扁球壳冲击屈曲的影响;数值算例表明,此方法是可行的。  相似文献   

13.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

14.
Based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis and nonlinear theory of shallow shells, considering the damage effect of the interlaminar interface and using the variation principle, the three-dimensional non-linear equilibrium differential equations of the laminated shallow shells with interfacial damage are derived. Then, considering a simply supported laminated shallow shell with damage and under normal load, an analytical solution is presented by using finite difference method to obtain the interlaminar stresses. Numerical results show, the stiffness of the shell is weakened, greater absolute values of displacements as well as smaller interlaminar stresses are obtained by interfacial damage. When the interfacial damage is further increased, delamination occurs obviously under normal pulling load and pure shear slip occurs under normal pressure load. The portion of the load undertaken by the two sides of the interface is more different. Different mechanical behaviors are shown in both sides of the interface, and the discontinuation of stresses and displacements takes place in the interface.  相似文献   

15.
带旋转自由度C^0类任意四边形板(壳)单元   总被引:5,自引:0,他引:5  
朱菊芬  郑罡 《计算力学学报》2000,17(3):287-292300
基于Reissner-Mindilin板弯曲理论和Von-Karman大挠度理论,采用单元域内和边界位移插值一致性的概念,将四节点等参弯曲单元与Allman膜变形二次插值模式相结合,对层合板壳的大挠度分析提供了一种实用的带旋转自由度的四节点C^0类板单元。大量算例表明:该单元对板壳结构的线性强度、稳定性和后屈曲分析都表现出良好的收敛性和足够的工程精度。  相似文献   

16.
Non-linear behavior of smart structures is of interest to researchers due to the possibilities for the elaboration of more effective actuators and sensors based on piezoelectric materials. The aim of the present work, is to present an integrated approach for the buckling behavior of smart beams and plates under multiple loading conditions. In order to present an accurate analysis, a coupled constitutive formulation between thermal, electrical and mechanical fields is elaborated incorporating non-linearity due to large displacements. An 8-node plate element was implemented in combination with discrete layer kinematics (LW) for the through-the-thickness representation of the structure. The issues of the critical buckling load under different electrical conditions as well as thermal and electrical loading are also presented. Experimental results contribute to the verification of the accuracy of the numerical analysis results and of the coupling mechanics in general.  相似文献   

17.
The simulation of the delamination process in laminated composite plates is quite complex and requires advanced finite element modeling techniques. Failure analysis tools must be able to predict initiation, size and propagation of delamination process. This paper presents the p-convergent partial discrete-layer elements with the virtual crack closure technique (VCCT) for the delamination analysis of laminated composite plates. The proposed element can be formulated by the suitable dimensional reduction from three-dimensional solid to two-dimensional plate. It is assumed that the piecewise linear variation of in-plane displacements and the constant value of out-of-plane displacements across the thickness. The higher-order approximation based on integrals of Legendre polynomials is used to define displacement fields. The three-dimensional VCCT is also slightly modified to incorporate with the proposed elements to estimate the energy release rate. The initiation of delamination occurs when the energy release rate for a displacement increment is same as the critical energy release rate corresponding to fracture toughness. The approach is to use a fracture mechanics criterion, but to avoid the complex moving mesh technique. At first, the validation and characteristic of the proposed elements are investigated on isotropic plates and orthotropic laminated plates, compared with referenced values. Then for fracture analysis, the efficiency of proposed approach is demonstrated with the help of additionally two problems such as the double-cantilever-beam test and the orthotropic laminated square plate with interior delamination.  相似文献   

18.
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.  相似文献   

19.
非线性压电效应下压电层合板的弯曲   总被引:2,自引:1,他引:2  
考虑非线性压电效应,即电致弹性和电致伸缩效应情况下压电层合板的弯曲。从非线性压电方程和几何方程导出了压电层合板合应力、合力矩与应变之间的广义本构关系,这些关系关于电场是非线性的。利用Ritz法和双傅立叶级数得到四边简支对称压电层合板在高电场作用下的非线性解并进行计算。结果表明,只考虑线性压电效应只能适应于作用电场较低或基础层的刚度比压电层的刚度要大得多的情况。  相似文献   

20.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedshellstructuresarewidelyusedintheaerospace ,marineindustry ,automobileindustryandotherengineeringapplications.Duringtheoperationallife ,thevarianceoftemperatureandmoisturereducestheelasticmoduli…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号