首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
FeCrAl合金具有优良的高温抗氧化性和耐辐照性能,是事故容错核燃料包壳的重要候选材料. 其在加工过程和热处理过程中易形成α纤维织构(<110>//RD)和γ纤维织构(<111>//ND),会影响材料的宏观力学性能与深加工成形能力. 本研究针对具有不同织构的多晶FeCrAl合金,建立了代表性体元模型, 使用晶体塑性有限元方法,在ABAQUS/Explicit中模拟材料单轴加载下的宏观应力应变曲线,分析不同织构对FeCrAl合金宏观力学本构关系的影响. 计算结果表明,对于具有α织构、γ织构和晶粒无择优取向的材料,在轧向上的应力应变曲线差异较小. γ织构会引起材料强烈的各向异性,在轧面法向上的屈服强度远高于轧向和横向上的屈服强度,这是因为晶粒的<111>方向平行于加载方向,滑移系难以启动. 提高γ纤维织构的比例,将增大轧面法向上的屈服强度. 本研究可以为优化FeCrAl合金材料织构、加工条件和材料力学性能提供参考.  相似文献   

2.
猪后腿肌肉的冲击压缩特性实验   总被引:1,自引:0,他引:1  
波形整形技术使试样满足应力均匀条件和恒定应变率加载,石英片检测试样两端的应力均匀性, 获得微弱的透射信号。对开始加载阶段径向惯性效应带来的轴向应力附加值给予了计算修正,得到了肌肉在 不同加载方向和不同应变率下的应力应变曲线。结果发现:肌肉材料的应力应变曲线呈现粘弹性材料所具有 的凹向上特征,由最小显著差数法进行统计分析,发现猪后腿肌肉的力学性能对应变率和加载方向都敏感。 沿纤维方向压缩时肌纤维易发生压缩失稳,强度比垂直纤维方向低。  相似文献   

3.
将近片层-γTiAl基合金视为以等轴γ颗粒为基体,PST颗粒为夹杂的两相复合材料,基于细观力学自洽理论,对合金的有效弹性模量及基体和夹杂中的应力和应变场进行了解析分析计算,并结合细观力学的宏细观关联方法,确定了近片层-γTiAl基合金的宏观屈服的微观表征.结果表明:夹杂颗粒中的应力和应变场与外载及夹杂的体积分数f和椭球长细比ρ有关,软取向PST夹杂颗粒的微变形屈服导致近片层-γTiAl基合金材料的整体宏观屈服.  相似文献   

4.
为了能有效描述镁合金宏观各向异性塑性行为,考虑了滑移、孪生、去孪生三种细观变形模式的特点,给出了相应的硬化函数;根据VonMises屈服准则,发展了一种镁合金宏观本构模型及其迭代算法。模型将变形模式的开启与晶粒取向相关联,同时针对镁合金孪生变形时引起的晶粒重新定向问题,描述了一种晶向偏转的方法。在此基础上编写了ABAQUS/UMAT材料用户子程序;利用开发的本构模型,开展了单轴拉伸、单轴压缩、单轴循环拉压加载条件下镁合金塑性行为的数值模拟,并对随机织构下的镁合金板材轧制过程进行了有限元仿真实验。模拟结果表明:单轴拉伸、单轴压缩和循环加载情形下的镁合金宏观硬化行为与实验结果基本吻合;轧制后镁合金板材表现出了应力-应变不均匀特性,多晶织构演化结果与实验结果基本一致。说明文中所提出的宏观本构模型、晶向偏转模型能够有效描述镁合金的宏观塑性行为和织构演化。  相似文献   

5.
为了了解金属材料在极端加载下复杂动态响应过程中的多种机制和效应,重点针对Al材料在高压、高应变率加载下的塑性变形机制,在经典晶体塑性模型的基础上,对其中的非线性弹性、位错动力学和硬化形式进行改进,建立适用于高压、高应变率加载下的热弹-黏塑性晶体塑性模型。该模型可以较好地描述单晶铝和多晶铝材料屈服强度随压力的变化过程,相比宏观模型,用该模型还获得了多晶Al材料在冲击加载下的织构演化规律,揭示了织构择优取向行为和压力的关系。  相似文献   

6.
绝热剪切失效是增材制造金属材料在高应变率载荷下的重要失效方式。使用电火花从冷金属过渡电弧增材技术制备的316L不锈钢单壁上沿着制造方向和扫描方向割出动态加载圆柱试样(尺寸为?4 mm×4 mm)。采用分离式霍普金森杆对增材制造316L试样在应变率4 000到6 000 s-1下加载至绝热剪切状态,研究了其动态剪切变形行为特别是剪切带内微观组织特征结构。不同应变率动态加载下,电弧增材制造316L不锈钢的动态应力首先由于应变硬化而增大,随后绝热剪切热软化与应变硬化的平衡导致了动态变形最后阶段的应力平台效应。绝热剪切带中亚晶经历了动态再结晶过程,具有与基体完全不同的等轴晶形貌,晶粒尺寸大约在200~300 nm。动态剪切复杂热力过程导致剪切带内的亚晶形成了双重织构,既有与基体一致的沿着压缩方向的<110>丝织构,也有与宏观剪切方向相关的晶体学织构,即(111)沿着宏观剪切面,<112>沿着宏观剪切方向。不同剪切带的等轴亚晶都有大量残余Σ3 60°晶界,同时存在与基体相同的孪生织构,可以证明孪生再结晶是绝热剪切带内亚晶主要的动态再结晶机制。宏观绝热...  相似文献   

7.
针对闭孔的密度梯度多孔材料,建立含球形孔洞的三维数值分析模型,研究其单轴压缩力学行为。首先,研究密度梯度对多孔材料宏观力学行为(如弹性模量和屈服强度)的影响;其次,研究密度梯度与材料局部力学性能的关系,得到了沿梯度方向弹性模量和屈服强度的分布规律;最后,讨论梯度多孔材料单轴压缩变形局部化机制。结果表明:当梯度材料与均质材料的总体相对密度相同时,梯度材料的宏观弹性模量和屈服强度均低于均质材料水平,其宏观应力-应变关系曲线降低;梯度多孔材料沿梯度方向的力学性能发生急剧变化,等效弹性模量沿梯度方向呈线性分布,屈服强度呈非线性曲线分布,导致沿梯度方向应力、应变呈现高度的不均匀性;多孔材料的变形局部化产生于孔隙率较大的薄弱位置,再逐渐向孔隙率较小的位置发展。由此可知,孔隙率的梯度变化影响多孔材料的力学性能,通过改变孔隙率的分布可实现材料预期的力学性质。  相似文献   

8.
实际工程结构中混凝土材料大多处于双轴或三轴的复杂应力状态,已有的细观力学数值研究工作大多针对单轴加载问题,对于双轴或者三轴加载条件下混凝土破坏模拟的研究相对较少。复杂受力条件下的混凝土材料破坏模拟中,细观组分强度准则选取的合理与否将成为混凝土破坏模式及宏观力学性能数值研究准确和成功与否的关键。本文旨在探讨单轴强度准则,如最大拉应变准则在多轴加载条件下混凝土破坏过程研究中运用的合理性。鉴于此,首先在细观尺度上建立了混凝土试件的二维随机骨料模型,分别采用弹性损伤本构关系模型及塑性损伤本构关系模型来描述细观组分(即砂浆基质)的力学性能,对双轴加载条件下混凝土的细观破坏过程进行数值模拟,对比了单轴强度准则和多轴强度准则下混凝土试件破坏路径及宏观应力-应变关系的差异。数值结果表明,简单的单轴强度准则难以反映双轴加载下混凝土内部应力状态的复杂性,不宜采用单轴强度准则来描述多轴加载下混凝土的破坏行为。  相似文献   

9.
为揭示热处理对TC4钛合金动态力学性能及微观组织的影响,选取2种典型热处理方式和5种加载应变率开展了TC4钛合金试样的动态力学性能实验,获取了动态应力-应变数据,并进行了试样的XRD和金相分析。结果表明:高应变率下TC4钛合金应变率强化效应显著。时效处理后,TC4钛合金流动应力、屈服强度及抗压强度得到提升,而固溶时效处理后上述性能降低。时效处理和未热处理试样应力-应变曲线均具有弹性、屈服和塑性阶段,而固溶时效处理后无明显弹性和屈服阶段。固溶时效处理后流动应力随应变率增加而增加,时效处理和未热处理试样流动应力无明显变化。时效处理后试样等轴初生α相显著增大且β相含量较低,固溶时效处理后α相晶界增大且含有针状α的β转变基体,TC4钛合金力学性能与β相和亚稳β相的马氏体转变有关。  相似文献   

10.
单轴载荷下X80钢的包申格效应研究   总被引:2,自引:0,他引:2  
本文通过单轴拉伸和压缩试验研究了X80管线钢的包申格效应(BE)。采用正向与反向加载方法研究材料变形历史特性。测定了X80钢的简单拉伸试验曲线,其应力-应变关系表明,该材料具有理想弹塑性特点。为了得到X80钢的BE,在不同预变形下对几个试件分别进行加载,并当给定的预应变值分别达到0.63%,0.67%,0.95%,1.27%和1.55%时就卸载。随后再进行反向加载实验,并记录应力应变曲线。该钢材反向加载时出现加工硬化,且屈服强度比正向加载时要低。正反向加载之间的屈服强度差值随着预应变增加而增大;当预应变超过0.95%时,反向屈服强度达到恒量。实验表明,X80钢的反向加载特性可用Remberg-Osgood关系拟合。最后给出了屈服强度降和预塑性应变之间的经验公式。  相似文献   

11.
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution.  相似文献   

12.
In order to study the behavior of material under finite deformation at various strain rates, the responses of AZ31 Mg sheet are measured under uniaxial (tension and compression) and multiaxial (simple shear) loadings along rolling direction (RD), 45° to rolling direction (DD), 90° to rolling direction (TD), and normal to the sheet (ND) to large strains. The material exhibits positive strain rate sensitivity (SRS) at room and elevated temperatures; the SRS is more pronounced at high temperatures and lower strain rates. The r-value of the material under tensile loading at room temperatures is higher in TD at lower strain rate. Texture measurements on several failed specimens are reported under tension and simple shear after finite plastic deformation of about 20% equivalent strain. The as-received material exhibits a strong fiber with equal fractions of grains having the c-axis slightly tilted away from the sheet normal towards both +RD and −RD. Pole figures obtained after tensile loading along the rolling direction (RD) show that the texture of the material strengthens even at low strains, with c-axis perpendicular to the sheet plane and prism planes lining up in a majority of grains. However, the tensile loading axis along TD does not lead to similar texture strengthening; the c-axis distribution appears to be virtually unchanged from the virgin state. The pole figures obtained after in-plane compression along RD brings the c-axes of the grains parallel to the loading direction. The pole figures after simple shear loading show that the c-axis rotates to lie on the sheet plane consistent with a compression axis 45° away on the sheet plane.  相似文献   

13.
微结构演化对镁合金材料力学性能有着显著的影响,为了揭示镁合金宏观塑性各向异性特性与非均匀孪生变形的关系,开展了不同路径下的单轴加载试验以及采用含滑移、孪生机制的晶体塑性本构模型对试验条件下的镁合金变形行为进行数值模拟研究。文中本构模型描述了滑移与孪生变形机制以及晶格转动的机制,同时研究采用三维微结构代表性有限元模型,其包含晶粒尺寸、晶向和晶界倾角等微结构参数。研究结果表明,轧制镁合金具有强烈的宏观塑性各向异性行为,并对这种镁合金塑性各向异性行为的模拟结果以及多晶织构的模拟演化结果与试验测量进行对比,结果都基本吻合。对孪生非均匀变形模拟分析表明,镁合金宏观塑性各向异性行为与滑移、孪生变形机制的不同启动组合紧密相关,同时多晶体内应力的非均匀分布受到孪生变形的严重影响。而不同晶粒尺寸的晶粒所发生的孪生变形有比较大的差异,造成孪晶变体在晶粒内的分布极不均匀。本研究可为通过微结构的合理配置来设计和控制材料的力学性能提供理论依据.  相似文献   

14.
Lightweight magnesium alloys, such as AZ31, constitute alternative materials of interest for many industrial sectors such as the transport industry. For instance, reducing vehicle weight and thus fuel consumption can actively benefit the global efforts of the current environmental industry policies. To this end, several research groups are focusing their experimental efforts on the development of advanced Mg alloys. However, comparatively little computational work has been oriented towards the simulation of the micromechanisms underlying the deformation of these metals. Among them, the model developed by Staroselsky and Anand [Staroselsky, A., Anand, L., 2003. A constitutive model for HCP materials deforming by slip and twinning: application to magnesium alloy AZ31B. International Journal of Plasticity 19 (10), 1843–1864] successfully captured some of the intrinsic features of deformation in Magnesium alloys. Nevertheless, some deformation micromechanisms, such as cross-hardening between slip and twin systems, have been either simplified or disregarded. In this work, we propose the development of a crystal plasticity continuum model aimed at fully describing the intrinsic deformation mechanisms between slip and twin systems. In order to calibrate and validate the proposed model, an experimental campaign consisting of a set of quasi-static compression tests at room temperature along the rolling and normal directions of a polycrystalline AZ31 rolled sheet, as well as an analysis of the crystallographic texture at different stages of deformation, has been carried out. The model is then exploited by investigating stress and strain fields, texture evolution, and slip and twin activities during deformation. The flexibility of the overall model is ultimately demonstrated by casting light on an experimental controversy on the role of the pyramidal slip 〈c + a〉 versus compression twinning in the late stage of polycrystalline deformation, and a failure criterion related to basal slip activity is proposed.  相似文献   

15.
赵伯宇  胡伟平  孟庆春 《力学学报》2021,53(5):1355-1366
材料内部的解理、滑移面剥离等细观损伤是引起宏观失效的根源, 从细观尺度研究损伤的发生和发展有助于深入认识材料的变形和失效过程. 本文基于晶体塑性理论, 从滑移系的受力和变形出发研究材料的细观损伤, 建立了考虑滑移面分解正应力的细观损伤模型, 为晶体材料解理断裂的分析提供了新方法. 首先, 在晶体弹塑性变形构型的基础上引入损伤变形梯度张量的概念, 从变形运动学着手建立了考虑损伤能量耗散的本构方程, 并推导了塑性流动方程与损伤演化方程; 然后, 建立了相应的数值计算方法, 给出了应力与状态变量的更新算法, 推导了Jacobian矩阵的表达式; 接着, 以$[100]$取向的单晶铜材料为例, 通过有限元计算与试验结果的对比, 并采用粒子群优化算法标定了11个材料细观参数; 最后, 将所提细观损伤模型应用于RVE单轴拉伸过程的模拟, 得到了考虑损伤影响的应力应变曲线, 并分析了材料的塑性流动与损伤演化过程. 结果表明, 本文所提模型能够计算材料在受载过程中的损伤累积效应, 合理反映晶体材料的细观损伤机理.   相似文献   

16.
The paper reports on a recent effort to develop a statistical (or Monte-Carlo) model for quantitative deformation texture prediction which is yet fast enough for implementation in every Gauss point of an FE simulation of a metal-forming process. The principles of Taylor-type models for the prediction of deformation textures of polycrystalline materials are reminded. This includes the full-constraints Taylor theory (every grain of a polycrystal undergoes the same plastic deformation), classical Relaxed Constraints Taylor theory (one or two of the components of the local velocity gradient tensor need not be the same for all grains) and multi-grain models (LAMEL model; mentioning of GIA model). The primal–dual structure of the equations relating strain rates with slip rates, and those relating stresses and resolved shear stresses on slip systems, is made clear. It is then possible to describe the basic philosophy and the mathematical implementation of a new model, called “advanced Lamel model” (ALAMEL). This model is more generally applicable than the previously developed LAMEL model, which is only valid for rolling. Both take interactions between neighbouring grains into account. Finally, quantitative comparisons are given between experimentally observed rolling textures and the predictions of the new model, as well as of other models: full-constraints and relaxed constraints Taylor, LAMEL, GIA, visco-plastic self-consistent and crystal plasticity finite element (CPFEM) models. This was done for IF steel (one thickness reduction) and for two aluminium alloys: AA1200 (five thickness reductions) and AA5182 (one thickness reduction). It was found that for AA1200, the new model is on average the best; for the two other cases, it is among the best models, but the LAMEL or CPFEM models are better. These results suggest that in spite of all simplifications, the ALAMEL model captures (and identifies) the domination mechanisms controlling the development of deformation textures in cubic metals.  相似文献   

17.
在细观尺度上建立能反映材料微观组织结构又能反映统计意义上宏观力学性能的代表性体积单元(Representative Volume Element, RVE),对其进行复杂加载下的数值研究,是目前预测材料宏观力学性能较有效的方法。本文从理论上分析并提供了对正六面体RVE在任意应力状态及任意应力路径下加载及宏观应力、应变计算的方法,用有限元软件ABAQUS实现了数值计算过程,并用此方法对循环加载下缺口圆棒颈部中心和边缘位置进行了RVE分析。结果表明:(1)此方法能准确的控制并实现正六面体RVE在任意应力状态及应力状态路径下加载;(2)通过RVE分析,可用于复杂加载下试样局部细观结构变化的研究。  相似文献   

18.
It is widely reported in current literature that the precipitation hardened Al–Li sheet alloys exhibit extremely high anisotropy in yield (and ultimate tensile) strength, which is well beyond what can be explained as purely a consequence of the strong crystallographic texture in the material (e.g. J. Mater. Sci. Eng. A265, 1999, 100). This paper presents a crystal plasticity based modeling framework that will (i) facilitate the segregation of the contributions to the overall anisotropy from crystallographic texture and precipitation hardening, and (ii) correlate the contribution from precipitate hardening to either co-planar slip activity or the non-coplanar slip activity in the cold-working step prior to the aging heat treatment. More specifically, a Taylor-type (fully-constrained) crystal plasticity model was formulated to predict the yield strength of the fully processed sheet and its anisotropy, while accounting for the initial texture in the hot-worked sheet, its evolution during the cold-working step prior to aging, and the inhomogeneous nucleation of the T1 phase platelets (these are known to form on {111} planes, but not usually in equal amounts on the different {111} planes in a given crystal). In an effort to illustrate the methodology developed in the study, a limited set of experiments was conducted on Al–Li 2090-T8E41 alloy sheet. Off-axis stretches were applied on the sheet at room temperature prior to the aging treatment, and the mechanical anisotropy in the fully processed sheets was characterized by performing tension tests on coupons cut from the sheet at 0, 30, 45, 60 and 90° to the original rolling direction (RD). Both the initial texture in the sheet and its evolution during the different off-axis stretches were characterized. The alloys processed in this study showed pronounced anisotropy. The application of the methodology developed in this study revealed that much of the observed anisotropy in this particular data set could be explained by accounting for the texture in the sample in the processed condition. Although the data set available was inadequate to establish clear correlations of the anisotropy with preferential hardening mechanisms arising from either co-planar or non-co-planar slip activity during the off-axis stretch, there were indications favoring the latter. This case study, however, illustrates the application of the methodology developed in this study to obtain better insight into the nature of the anisotropy in these sheets and its physical origin.  相似文献   

19.
This paper deals with the simulation of the mechanical response and texture evolution of cubic crystals and polycrystals for a rate-independent elastic–plastic constitutive law. No viscous effects are considered. An algorithm is introduced to treat the difficult case of multi-surface plasticity. This algorithm allows the computation of the mechanical response of a single crystal. The corresponding yield surface is made of the intersection of several hyper-planes in the stress space. The problem of the multiplicity of the slip systems is solved thanks to a pseudo-inversion method. Self and latent hardening are taken into account. In order to compute the response of a polycrystal, a Taylor homogenization scheme is used. The stress–strain response of single crystals and polycrystals is computed for various loading cases. The texture evolution predicted for compression, plane strain compression and simple shear are compared with the results given by a visco-plastic polycrystalline model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号