首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper aims to present the exact closed form solutions and postbuckling behavior of the beam under a concentrated moment within the span length of beam. Two approaches are used in this paper. The nonlinear governing differential equations based on elastica theory are derived and solved analytically for the exact closed form solutions in terms of elliptic integral of the first and second kinds. The results are presented in graphical diagram of equilibrium paths, equilibrium configurations and critical loads. For validation of the results from the first approach, the shooting method is employed to solve a set of nonlinear differential equations with boundary conditions. The set of nonlinear governing differential equations are integrated by using Runge–Kutta method fifth order with adaptive step size scheme. The error norms of the end conditions are minimized within prescribed tolerance (10−5). The results from both approaches are in good agreement. From the results, it is found that the stability of this type of beam exhibits both stable and unstable configurations. The limit load point existed. The roller support can move through the hinged support in some cases of β and leads to the more complex of the configuration shapes of the beam.  相似文献   

2.
A set of nonlinear differential equations is established by using Kane‘s method for the planar oscillation of flexible beams undergoing a large linear motion. In the case of a simply supported slender beam under certain average acceleration of base, the second natural frequency of the beam may approximate the tripled first one so that the condition of 3 : 1 internal resonance of the beam holds true. The method of multiple scales is used to solve directly the nonlinear differential equations and to derive a set of nonlinear modulation equations for the principal parametric resonance of the first mode combined with 3 : 1 internal resonance between the first two modes. Then, the modulation equations are numerically solved to obtain the steady-state response and the stability condition of the beam. The abundant nonlinear dynamic behaviors, such as various types of local bifurcations and chaos that do not appear for linear models, can be observed in the case studies. For a Hopf bifurcation,the 4-dimensional modulation equations are reduced onto the central manifold and the type of Hopf bifurcation is determined. As usual, a limit cycle may undergo a series of period-doubling bifurcations and become a chaotic oscillation at last.  相似文献   

3.
曹志刚 《力学季刊》2015,36(4):749-756
采用广义微分求积法(GDQM)对钢筋混凝土(RC)梁进行了准静力分析,得到了其抗静载的强度特性.首先,基于虚功原理导出了考虑钢筋和混凝土材料的非线性的RC梁准静力分析控制微分方程,并根据广义微分求积法对其离散,从而得到有限自由度的非线性代数方程组,进而采用Newton-Raphson迭代求解格式,建立了荷载增量法数值分析模型.其次,通过本文GDQM与有限元法分析结果比较,表明了新建算法的正确性;与有限元法的收敛性对比表明本文算法较有限元法有优越性.  相似文献   

4.
ABSTRACT

A continuum-based design sensitivity analysis (DSA) method is presented for configuration design of nonlinear structural systems using Mindlin plate and Tim-oshenko beam theories. Both displacement and critical load performance measures are considered. Configuration design variables are characterized by shape and orientation changes of structural components. The material derivative that is used to develop the continuum-based shape DSA method is extended to account for effects of configuration design variation. The piecewise linear design velocity field, i.e., C0-regular, is used to support configuration design changes for a broad class of built-up structures with beams and plates. To allow use of the C0-design velocity field, mathematical models of beam and plate bending must be second-order partial differential equations, so that only first-order derivatives appear in the integrand of the energy equation and, thus, in the integrand of the configuration design sensitivity expression. Since the Mindlin plate and Timoshenko beam theories use displacement and rotation to describe structural response, mathematical models of beam and plate bending are reduced to second-order partial differential equations. The isoparametric finite element formulations are used for numerical evaluation of continuum design sensitivity expressions.  相似文献   

5.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   

6.
In this paper the dual reciprocity boundary element method is employed to solve nonlinear differential equation ∇2 u+u+ɛu 3 =b. Results obtained in an example have a good agreement with those by FEM and show the applicability and simplicity of dual reciprocity method(DRM)in solving nonlinear differential equations.  相似文献   

7.
An efficient scheme, called quasi-linearization finite differences, is developed for large-deflection analysis of prismatic and non-prismatic slender cantilever beams subjected to various types of continuous and discontinuous external variable distributed and concentrated loads in horizontal and vertical global directions. Simultaneous equations of highly nonlinear and linear terms are obtained when casting the derived exact highly nonlinear governing differential equation using central finite differences on the nodes along the beam. A quasi-linearization scheme is used to solve these equations based on successive corrections of the nonlinear terms in the simultaneous equations. The nonlinear terms in the simultaneous equations are assumed constant during each correction (iteration). Several representative numerical examples of prismatic and non-prismatic slender cantilever beams with different loading conditions are analyzed to illustrate the merits of the adopted numerical scheme as well as its validity, accuracy and efficiency. The results of the present scheme are checked using large-displacement finite element analysis by the MSC/NASTRAN program. A comparison between the present secheme, MSC/NASTRAN and available results from the literature reveals excellent agreement. The advantage of the new scheme is that the load can be applied in one step with few iterations (3–6 iterations).  相似文献   

8.
A system of three nonlinear partial differential equations describing the flexural-flexural-torsional vibrations of a rotating slender cantilever beam of arbitrary cross-section is derived using Hamilton’s principle. It is assumed that the center of gravity and the shear center are at different points. The interaction between flexural and torsional vibrations is accounted for in the linear and nonlinear parts of model Published in Prikladnaya Mekhanika, Vol. 44, No. 5, pp. 123–132, May 2008.  相似文献   

9.
This paper studies the chaotic dynamics of two cylindrical shells nested into each other with a gap and their reinforcing beam, also with a gap, which is subjected to a distributed alternating load. The problem is solved using methods of nonlinear dynamics and the qualitative theory of differential equations. The Novozhilov equations for geometrically nonlinear structures are used as the governing equations. Contact pressure is determined by Kantor’s method. Using finite elements in spatial variables, the partial differential equations for the beam and shells are reduced to the Cauchy problem, which is solved by explicit integration (Euler’s method). The chaotic synchronization of this system is studied.  相似文献   

10.
In this paper, the dynamic behavior of a cantilever beam impacting two flexible stops as well as rigid stops is studied both experimentally and numerically. The effect of contact stiffness, clearance, and contacting materials is studied in detail. For the numerical study of the system, a finite element model is created and the resulting differential equations are solved using a Time Variational Method (TVM). To achieve higher computational efficiency, the Newton–Krylov method is used along with TVM. Experimental results validate the contact model proposed for predicting the first mode system dynamics. A new nonlinear force estimation function has been proposed based on measured accelerations, which enables the understanding of the impact dynamics.  相似文献   

11.
In this paper the post-critical behavior of beam columns with variable mass and stiffness properties subjected to follower forces arbitrarily distributed along their length in the presence of damping (both internal and external) is investigated using a complete nonlinear dynamic analysis. Although the static nonlinear analysis is more economical in computational cost, it is associated only with the loss of local stability via flutter or divergence. Thus, the nonlinear dynamic analysis is adopted in order to examine the global stability of the system. The governing equations of hyperbolic type are derived in terms of the displacements by considering (a) nonlinear response including the axial deformation, (b) nonlinear response excluding the axial deformation and (c) linear response. Moreover, as the cross-sectional properties of the beam vary along its axis, the resulting coupled nonlinear differential equations have variable coefficients. Their solution is achieved using the analog equation method (AEM) of Katsikadelis. Besides its accuracy and effectiveness, this method overcomes the shortcoming of a possible FEM solution which may experience a lack of convergence. The problems treated in this investigation include beam columns with various load distributions, such as constant, linear and parabolic. Some of the conclusions detected in studying the nonlinear dynamic stability of Beck’s column with variable cross section (Katsikadelis and Tsiatas, Nonlinear dynamic stability of damped Beck’s column with variable cross section. Int. J. Non-linear Mech. 42, 164–171, 2007), are also valid for the case of distributed loads. The important, however, finding is that the post-critical response under distributed loads depends on the law of distribution of mass and stiffness properties, which may lead also to explosive flutter (unbounded amplitude), in contrast to Beck’s column (end-tip load) where the motion is always bounded.  相似文献   

12.
The nonlinear response characteristics for a dynamic system with a geometric nonlinearity is examined using a multibody dynamics method. The planar system is an initially straight clamped-clamped beam subject to high frequency excitation in the vicinity of its third natural mode. The model includes a pre-applied static axial load, linear bending stiffness and a cubic in-plane stretching force. Constrained flexibility is applied to a multibody method that lumps the beam into N elements for three substructures subjected to the nonlinear partial differential equation of motion and N-1 linear modal constraints. This procedure is verified by d'Alembert's principle and leads to a discrete form of Galerkin's method. A finite difference scheme models the elastic forces. The beam is tuned by the axial force to obtain fourth order internal resonance that demonstrates bimodal and trimodal responses in agreement with low and moderate excitation test results. The continuous Galerkin method is shown to generate results conflicting with the test and multibody method. A new checking function based on Gauss' principle of least constraint is applied to the beam to minimize modal constraint error.  相似文献   

13.
Based on a seven-degree-of-freedom shear deformable beam model, a geometrical nonlinear analysis of thin-walled composite beams with arbitrary lay-ups under various types of loads is presented. This model accounts for all the structural coupling coming from both material anisotropy and geometric nonlinearity. The general nonlinear governing equations are derived and solved by means of an incremental Newton–Raphson method. A displacement-based one-dimensional finite element model that accounts for the geometric nonlinearity in the von Kármán sense is developed to solve the problem. Numerical results are obtained for thin-walled composite beam under vertical load to investigate the effects of fiber orientation, geometric nonlinearity, and shear deformation on the axial–flexural–torsional response.  相似文献   

14.
A finite difference method is presented to simulate transverse vibrations of an axially moving string.By discretizing the governing equation and the equation of stress- strain relation at different frictional knots,two linear sparse finite difference equation systems are obtained.The two explicit difference schemes can be calculated alternatively, which make the computation much more efficient.The numerical method makes the nonlinear model easier to deal with and of truncation errors,O(Δt~2 Δx~2).It also shows quite good stability for small initial values.Numerical examples are presented to demonstrate the efficiency and the stability of the algorithm,and dynamic analysis of a viscoelastic string is given by using the numerical results.  相似文献   

15.
We study the structure of the set of solutions, continuously differentiable for tR + = [0; + ∞), of one limit problem for systems of nonlinear functional differential equations of neutral type with nonlinear deviations of argument that depend on an unknown function. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 2, pp. 277–289, April–June, 2007.  相似文献   

16.
An investigation is performed into the nonlinear pull-in behavior of a cantilever-type nano-mechanical electrostatic actuator. In performing the analysis, the actuator is modeled as an Euler–Bernoulli beam and the influence of surface effects, the fringing field effect and the Casimir force effect are taken into explicit account. In general, analyzing the dynamic behavior of nanoscale electrostatic devices is challenging due to the nonlinear coupling of the electrostatic force and Casimir force. In the present study, this problem is resolved by using a hybrid computational scheme comprising the differential transformation method and the finite difference approximation technique. The feasibility of the proposed approach is demonstrated by the two cantilever-type micro-beams when actuated by a DC voltage. The numerical results show that the present results for the pull-in voltage deviate by no more than 1.47% from those presented in the literature using a different scheme. In addition, it is shown that surface effects play a significant role in determining the static deflection and pull-in voltage of the cantilever beam nano-beam. In general, the results confirm that the hybrid differential transformation/finite difference approximation method provides an accurate and computationally efficient means of simulating the nonlinear electrostatic behavior of nanostructure systems.  相似文献   

17.
A refined geometrically nonlinear formulation of a thin-shell finite element based on the Kirchhoff-Love hypotheses is considered. Strain relations, which adequately describe the deformation of the element with finite bending of its middle surface, are obtained by integrating the differential equation of a planar curve. For a triangular element with 15 degrees of freedom, a cost-effective algorithm is developed for calculating the coefficients of the first and second variations of the strain energy, which are used to formulate the conditions of equilibrium and stability of the discrete model of the shell. Accuracy and convergence of the finite-element solutions are studied using test problems of nonlinear deformation of elastic plates and shells. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 5, pp. 160–172, September–October, 2007.  相似文献   

18.
Dynamical analysis of axially moving plate by finite difference method   总被引:1,自引:0,他引:1  
The complex natural frequencies for linear free vibrations and bifurcation and chaos for forced nonlinear vibration of axially moving viscoelastic plate are investigated in this paper. The governing partial differential equation of out-of-plane motion of the plate is derived by Newton’s second law. The finite difference method in spatial field is applied to the differential equation to study the instability due to flutter and divergence. The finite difference method in both spatial and temporal field is used in the analysis of a nonlinear partial differential equation to detect bifurcations and chaos of a nonlinear forced vibration of the system. Numerical results show that, with the increasing axially moving speed, the increasing excitation amplitude, and the decreasing viscosity coefficient, the equilibrium loses its stability and bifurcates into periodic motion, and then the periodic motion becomes chaotic motion by period-doubling bifurcation.  相似文献   

19.
The geometry of flexible beams that are made of a physically nonlinear material and have a nearly linear load-deflection characteristic is identified for a wide range of monotonic and harmonic loads. The geometrically nonlinear beam equations are used. The physically nonlinear behavior of the material is described using a unified viscoplastic theory. A beam thickness criterion is formulated to provide nearly linear stiffness characteristic of the beam in the case of significant deflections and physically nonlinear deformations of the beam’s outer layers __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 2, pp. 85–92, February 2006.  相似文献   

20.
Instead of using the previous straight beam element to approximate the curved beam,in this paper,a curvilinear coordinate is employed to describe the deformations,and a new curved beam element is proposed to model the curved beam.Based on exact nonlinear strain-displacement relation,virtual work principle is used to derive dynamic equations for a rotating curved beam,with the effects of axial extensibility,shear deformation and rotary inertia taken into account.The constant matrices are solved numerically utilizing the Gauss quadrature integration method.Newmark and Newton-Raphson iteration methods are adopted to solve the differential equations of the rigid-flexible coupling system.The present results are compared with those obtained by commercial programs to validate the present finite method.In order to further illustrate the convergence and efficiency characteristics of the present modeling and computation formulation,comparison of the results of the present formulation with those of the ADAMS software are made.Furthermore,the present results obtained from linear formulation are compared with those from nonlinear formulation,and the special dynamic characteristics of the curved beam are concluded by comparison with those of the straight beam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号