首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文基于大变形的理论,采用弧坐标首先建立了具有初始位移的桩基的非线性数学模型,一组强非线性的微分-积分方程,其中,地基的抗力采用了Winkeler模型;其次,引入变数变换将微分-积分方程转化为一组非线性微分方程,并用微分求积方法离散了方程组,得到一组离散化的非线性代数方程;最后用Newton-Raphson迭代方法对离散化方程进行了求解,得到了桩基变形前后的构形、弯矩和剪力.计算中选取了两种不同类型的初始位移,并考察了它们对桩基大变形力学行为的影响.  相似文献   

2.
This paper investigates the steady-state responses of a Timoshenko beam of infinite length supported by a nonlinear viscoelastic Pasternak foundation subjected to a moving harmonic load. The nonlinear viscoelastic foundation is assumed to be a Pasternak foundation with linear-plus-cubic stiffness and viscous damping. Based on Timoshenko beam theory, the nonlinear equations of motion are derived by considering the effects of the shear deformable beams and the shear modulus of foundations at the same time. For the first time, the modified Adomian decomposition method(ADM) is used for solving the response of the beam resting on a nonlinear foundation. By employing the standard ADM and the modified ADM, the nonlinear term is decomposed, respectively. Based on the Green's function and the theorem of residues presented,the closed form solutions for those linear iterative equations have been determined via complex Fourier transform. Numerical results indicate that two kinds of ADM predict qualitatively identical tendencies of the dynamic response with variable parameters, but the deflection of beam predicted by the modified ADM is smaller than that by the standard ADM. The influence of the shear modulus of beams and foundation is investigated. The numerical results show that the deflection of Timoshenko beams decrease with an increase of the shear modulus of beams and that of foundations.  相似文献   

3.
用无网格局部Petrov-Galerkin法分析非线性地基梁   总被引:2,自引:1,他引:2  
龙述尧 《力学季刊》2002,23(4):547-551
利用无网格局部Petrov-Galerkin法求解了非线性地基梁。在Petrov-Galerkin方法中,采用移动最小二乘(MLS)近似函数作为场主量挠度的试函数并取移动最小二乘近似函数中的体验函数作为近似场函数的加权函数,采用罚因子法施加本质边界条件。文末给出了两个计算实例,算例的结果表明,Petrov-galerkin法不仅能成功地分析线性地基梁,而且也适用于解非线性地基梁,在分析非线性地基梁时具有收敛快,稳定性好的优点。  相似文献   

4.
非线性振动一种稳定的模糊控制方法研究   总被引:2,自引:0,他引:2  
由于非线性振动系统的非线性本质,在于传统控制理论的线性控制器用于非线性振动控制效果不佳。本文针对非线性振动系统提出了一种模糊自适应滑模控制方案。  相似文献   

5.
G. G. Sheng  X. Wang  G. Fu  H. Hu 《Nonlinear dynamics》2014,78(2):1421-1434
This paper reports the result of an investigation on the nonlinear vibrations of functionally graded cylindrical shell surrounded by an elastic foundation, based on Hamilton’s principle, von Kármán nonlinear theory, and the first-order shear deformation theory. Material properties are assumed to be temperature dependent. The surrounding elastic medium is modeled as Winkler foundation model, Pasternak foundation model, and nonlinear foundation model. Galerkin’s method is utilized to convert the governing partial differential equations to nonlinear ordinary differential equations with quadratic and cubic nonlinearities. Considering the primary resonance case, the method of multiple scales is used to study the frequency response of nonlinear vibrations and the softening/hardening behavior. Parametric effects on the nonlinear vibrations are investigated.  相似文献   

6.
在有限变形条件下损伤粘弹性梁的动力学行为   总被引:4,自引:1,他引:4  
本文在有限变形条件下,根据损伤粘弹性材料的一种卷积型本构关系和温克列假设,建立了粘弹性基础上损伤粘弹性Timoshenko梁的控制方程。这是一组非线性积分——偏微分方程。为了便于分析,首先利用Galerkin方法对该方程组进行简化,得到一组非线性积分一常微分方程。然后应用非线性动力学中的数值方法,分析了粘弹性地基上损伤粘弹性Timoshenko梁的非线性动力学行为,得到了简化系统的相平面图、Poincare截面和分叉图等。考察了材料参数和载荷参数等对梁的动力学行为的影响。特别,考察了基础和损伤对粘弹性梁的动力学行为的影响。  相似文献   

7.
In this study, simple analytical expressions are presented for large amplitude free vibration and post-buckling analysis of functionally graded beams rest on nonlinear elastic foundation subjected to axial force. Euler–Bernoulli assumptions together with Von Karman’s strain–displacement relation are employed to derive the governing partial differential equation of motion. Furthermore, the elastic foundation contains shearing layer and cubic nonlinearity. He’s variational method is employed to obtain the approximate closed form solution of the nonlinear governing equation. Comparison between results of the present work and those available in literature shows the accuracy of this method. Some new results for the nonlinear natural frequencies and buckling load of the FG beams such as the effect of vibration amplitude, elastic coefficients of foundation, axial force, and material inhomogenity are presented for future references.  相似文献   

8.
In this paper, based on the nonlinear thin shell theory, a geometrically nonlinear formulation using the total Lagrangian approach for rotational shells, as well as rotational shells on the Winkler-type elastic foundation, is presented. The displacements of the middle surface are approached by a B-spline function. All nonlinear terms of membrane strains are reserved. Two cases in which the arc length as well as ordinate is used as the coordinate parameter along meridional direction are discussed at the same time.The project supported by National natural Science Foundation of China.  相似文献   

9.
非线性弹性基础上矩形板热后屈曲分析   总被引:1,自引:0,他引:1  
给出非线性弹性基础上矩形板在均匀和非均匀(抛物型)热分布作用下的后屈曲分析。采用摄动——Galerkin混合法给出完善和非完善矩形板热屈曲载荷和热后屈曲平衡路径。数值计算结果表明,非线性弹性基础上矩形板具有不稳定的热后屈曲平衡路径,且对初始几何缺陷是敏感的  相似文献   

10.
The paper proposes a method to solve geometrically nonlinear bending problems for thin orthotropic shallow shells and plates interacting with a Winkler–Pasternak foundation under transverse loading. This method is based on Ritz’s variational method and the R-function method. The developed algorithm and software are used to solve a number of test problems and to study complex-shaped shells. The effect of the shape of shells, the boundary conditions, the stiffness of the foundation, and the load distribution on the behavior of isotropic and orthotropic shells undergoing geometrically nonlinear bending is studied  相似文献   

11.
The two prime models used currently to describe rocking of rigid bodies, the Housner’s model and the Winkler foundation model, can capture some of the salient features of the physics of this important problem. These two models involve either null or linear interaction between the block and the foundation.Hopefully, some additional aspects of the problem can be captured by an enhanced nonlinear model for the base-foundation interaction. In this regard, what it is adopted in this paper is the Hunt and Crossley’s nonlinear impact force model in which the impact/contact force is represented by springs in parallel with nonlinear dampers. In this regard, a proper mathematical formulation is developed accounting for the possibility of uplifting in the case of strong excitation. Further, an averaging procedure has been developed to expeditiously derive the steady state response amplitude in case of harmonic base excitation. The analytical study is supplemented by experimental tests developed in the Laboratory of Experimental Dynamics at the University of Palermo, Italy. In this context, because of the obvious relevance for historical monuments, free-rocking tests are presented for several marble-block geometries on both rigid and flexible foundations. Numerical vis-à-vis experimental data are examined, showing that the proposed nonlinear model is sufficiently versatile to capture additional aspects of the physics of the problem even for quite soft foundation materials.  相似文献   

12.
Nonlinear free vibration of symmetrically laminated magneto-electro-elastic rectangular plate resting on an elastic foundation is studied analytically. The plate is considered to be simply supported on all edges. It is also assumed that the magneto-electro-elastic body is poled along the z direction and subjected to electric and magnetic potentials between the upper and lower surfaces. To model the motion of the plate, the first order shear deformation theory along with the Gauss's equations for electrostatics and magnetostatics are used. Then equations of motion are reduced to a single nonlinear ordinary differential equation which is solved analytically by multiple scales method. The results are compared with the published results and good agreement is found. Some numerical examples are presented to investigate the effects of several parameters on the linear and nonlinear behavior of these plates.  相似文献   

13.
基于各向同性中厚板理论,考虑板的非线性效应和地基耦合效应.应用Hamilton变分原理,建立了双参数地基上周边自由中厚矩形板的非线性运动控制方程,提出了一组满足问题全部边界条件的试函数。应用伽辽金法和谐波平衡法对方程进行求解。讨论了板的结构参数和地基的物理参数对弹性地基上周边自由中厚矩形板的非线性自由振动特性的影响。  相似文献   

14.
Modeling and nonlinear vibration analysis of graphene-reinforced composite (GRC) laminated beams resting on elastic foundations in thermal environments are presented. The graphene reinforcements are assumed to be aligned and are distributed either uniformly or functionally graded of piece-wise type along the thickness of the beam. The motion equations of the beams are based on a higher-order shear deformation beam theory and von Kármán strain displacement relationships. The beam–foundation interaction and thermal effects are also included. The temperature-dependent material properties of GRCs are estimated through a micromechanical model. A two-step perturbation approach is employed to determine the nonlinear-to-linear frequency ratios of GRC laminated beams. Detailed parametric studies are carried out to investigate the effects of material property gradient, temperature variation, stacking sequence as well as the foundation stiffness on the linear and nonlinear vibration characteristics of the GRC laminated beams.  相似文献   

15.
In this paper, a new method is presented based on [1]. It can be used to solve the arbitrary nonlinear system of differential equations with variable coefficients. By this method, the general solution for large deformation of nonhomogeneous circular plates resting on an elastic foundation is derived. The convergence of the solution is proved. Finally, it is only necessary to solve a set of nonlinear algebraic equations with three unknowns. The solution obtained by the present method has large convergence range and the computation is simpler and more rapid than other numerical methods.Numerical examples given at the end of this paper indicate that satisfactory results of stress resullants and displacements can be obtained by the present method. The correctness of the theory in this paper is, confirmed.  相似文献   

16.
ABSTRACT

A postbuckling analysis is presented for a moderately thick rectangular plate subjected to combined axial compression and uniform temperature loading, and resting on a softening nonlinear elastic foundation. The cases of (1) thermal postbuckling of initially compressed plates and (2) compressive post-buckling of initially heated plates are considered. The initial geometrical imperfections of the plates are taken into account. Formulations are based on Reissner-Mindlin plate theory, considering first-order shear deformation effects, and including plate-foundation interaction and thermal effects. The analysis uses a deflection-type perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples include the performance of perfect and imperfect, moderately thick plates resting on softening nonlinear elastic foundations. Typical results are presented in dimensionless graphical form.  相似文献   

17.
In the paper work, the nonlinear vibration response of functionally graded (FG) Euler–Bernoulli beam resting on elastic foundation is studied. Based on von Kármán’s geometric nonlinearity, the partial differential governing equations describing the nonlinear vibration of FG Euler–Bernoulli beam are derived from Hamilton’s principle and are reduced to an ordinary nonlinear differential equation with quadratic and cubic nonlinear terms via Galerkin’s procedure. Due to unsymmetrical material variation along the thickness of FG beam, the neutral surface concept is proposed to remove the stretching and bending coupling effect and the rotary inertia of the cross section is incorporated to obtain an analytical solution. Numerical results are presented to show the effects of the nonlocal parameters and vibration amplitude on the frequency responses. This results may be useful in design and engineering applications.  相似文献   

18.
An experimental study for cables in a stayed bridge is presented. In this analysis, the tensions on the cables were calculated considering linear and nonlinear approaches; for the nonlinear analysis a 2D model was used to evaluate vibration modes and responses under wind and traffic loads. The 8 semi-harp cable stayed bridge used for this study has 112 cables and vibration measurements were done under normal operational conditions. Tensions computed from the nonlinear model were compared with those from the traditional linear model, where average differences were within 3.3%. The estimated tensions from vibration tests have good correlation with the experimental values measured from load tests, while the vibration procedure was carried out in less than 2 days without limiting the bridge operation; converse to the load tests where approximately 30 days are necessary and the bridge traffic has to be closed for short periods during measurements.  相似文献   

19.
The postbuckling deflection of an infinite beam that is bonded to a linear elastic foundation and is subjected to an internal compressive stress is analyzed. The nonlinear equilibrium equation that governs the problem considers extensional deformation of the beam. An analytic solution of the nonlinear equilibrium equation is presented and is found to be in good agreement with numerical simulations of the problem. The numerical simulations confirm that for a linear elastic foundation the postbuckling deflection is periodic. The analytic solution shows that the postbuckling wavelength is unaffected by the level of internal stress, and is equal to the wavelength at the critical state.  相似文献   

20.
The nonlinear vibration characteristics of the piezoelectric circular cylindrical nanoshells resting on an elastic foundation are analyzed. The small scale effect and thermo-electro-mechanical loading are taken into account. Based on the nonlocal elasticity theory and Donnell's nonlinear shell theory, the nonlinear governing equations and the corresponding boundary conditions are derived by employing Hamilton's principle. Then,the Galerkin method is used to transform the governing equations into a set of ordinary differential equations, and subsequently, the multiple-scale method is used to obtain an approximate analytical solution. Finally, an extensive parametric study is conducted to examine the effects of the nonlocal parameter, the external electric potential, the temperature rise, and the Winkler-Pasternak foundation parameters on the nonlinear vibration characteristics of circular cylindrical piezoelectric nanoshells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号